【题目】如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.
(1)求抛物线的解析式及点C的坐标;
(2)求证:△ABC是直角三角形;
(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.
【答案】
(1)
解:∵顶点坐标为(1,1),
∴设抛物线解析式为y=a(x﹣1)2+1,
又抛物线过原点,
∴0=a(0﹣1)2+1,解得a=﹣1,
∴抛物线解析式为y=﹣(x﹣1)2+1,
即y=﹣x2+2x,
联立抛物线和直线解析式可得 ,解得 或 ,
∴B(2,0),C(﹣1,﹣3);
(2)
证明:如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,
则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,
∴∠ABO=∠CBO=45°,即∠ABC=90°,
∴△ABC是直角三角形;
(3)
解:假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),
∴ON=|x|,MN=|﹣x2+2x|,
由(2)在Rt△ABD和Rt△CEB中,可分别求得AB= ,BC=3 ,
∵MN⊥x轴于点N
∴∠ABC=∠MNO=90°,
∴当△ABC和△MNO相似时有 = 或 = ,
①当 = 时,则有 = ,即|x||﹣x+2|= |x|,
∵当x=0时M、O、N不能构成三角形,
∴x≠0,
∴|﹣x+2|= ,即﹣x+2=± ,解得x= 或x= ,
此时N点坐标为( ,0)或( ,0);
②当 = 时,则有 = ,即|x||﹣x+2|=3|x|,
∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,
此时N点坐标为(﹣1,0)或(5,0),
综上可知存在满足条件的N点,其坐标为( ,0)或( ,0)或(﹣1,0)或(5,0).
【解析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得 = 或 = ,可求得N点的坐标.
科目:初中数学 来源: 题型:
【题目】如图,E、B、F、C四点在一条直线上,EB=CF ,∠A =∠D,添以下哪一个条件仍不能证明△ABC ≌△DEF的是( )
A. ∠DEF=∠ABC B. DF∥AC C. AB∥DE D. AB =DE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级一班20名女生某次体育测试的成绩统计如下:
成绩(分) | 60 | 70 | 80 | 90 | 100 |
人数(人) | 1 | 5 | x | y | 2 |
(1)如果这20名女生体育成绩的平均分数是82分,求x、y的值;
(2)在(1)的条件下,设20名学生测试成绩的众数是a,中位数是b,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】服装店老板用45 000元购进一批羽绒服,由于深受顾客喜爱,很快售完.老板又用49 500元购进相同数量的该款羽绒服,但每件进价比第一批多了9元.根据题中信息,解答下列问题:
(Ⅰ)第一批羽绒服每件进价是多少元?
(Ⅱ)老板以每件120元的价格销售该款式羽绒服,当第二批羽绒服售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于14 000元,则剩余的羽绒服每件售价至少要多少元?(利润售价-进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣ x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为 m.
(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】推理填空:如图AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE.
解:∵AB∥CD(已知)
∴∠4=∠1+_____(_______)
∵∠3=∠4(已知)
∴∠3=∠1+_____(_______)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(_______)
即∠_____=∠_____
∴∠3=∠_____(_______)
∴AD∥BE(_______).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的坐标系中,△ABC的三个顶点的坐标依次为A(2,4)、B(﹣3,﹣2)、C(3,1).
(1)请在这个坐标系中作出△ABC和关于y轴对称的△A1B1C1.
(2)分别写出点A1、B1、C1的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.
(1)已知某天售出该化工原料40千克,则当天的销售单价为 50 元/千克;
(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡. ①求这种化工原料的进价;
②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)某省现在正处于50年不遇的干旱.某中学八年级(2班)共50名同学,开展了“献爱心”捐款活动,活动结束后,班长将捐款情况进行了统计,并绘制成了如图所示的统计图.
(1)求50名同学的捐款平均数.
(2)该中学共有学生2000名,请根据该班的捐款情况,估计这所中学的捐款数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com