精英家教网 > 初中数学 > 题目详情

【题目】推理填空:如图ABCD,1=2,3=4,试说明ADBE.

解:∵ABCD(已知)

∴∠4=1+____________

∵∠3=4(已知)

∴∠3=1+____________

∵∠1=2(已知)

∴∠1+∠CAF=2+∠CAF_______

即∠_____=_____

∴∠3=____________

ADBE_______

【答案】 CAF 两直线平行,同位角相等 CAF 等量代换 等量代换 4 DAC DAC 等量代换 内错角相等,两直线平行

【解析】首先由平行线的性质可得∠4=∠BAE,然后结合已知,通过等量代换推出∠3=∠DAC,最后由内错角相等,两直线平行可得AD∥BE.

∵AB∥CD(已知)

∴∠4=∠1+ ∠CAF  两直线平行,同位角相等 

∵∠3=∠4(已知)

∴∠3=∠1+ ∠CAF  等量代换 

∵∠1=∠2(已知)

∴∠1+∠CAF=∠2+∠CAF( 等量代换 

 4 =∠ DAC 

∴∠3=∠ ∠DAC  等量代换 

∴AD∥BE( 内错角相等,两直线平行 ).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AD平分∠BACDEABE,则下列结论:①DECD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+ACAB,其中正确的是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.

(1)求二次函数的关系式;
(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,试判断S有最大值或最小值?并说明理由;
(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.

(1)求抛物线的解析式及点C的坐标;
(2)求证:△ABC是直角三角形;
(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC边上的高,BE平分∠△ABC交AD于点E.若∠C=60°,∠BED=70°. 求∠ABC和∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知MB=ND,MBA=NDC,下列条件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为

查看答案和解析>>

同步练习册答案