精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.

(1)求二次函数的关系式;
(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,试判断S有最大值或最小值?并说明理由;
(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

【答案】
(1)

解:把B(3,0),C(0,3)代入y=﹣x2+bx+c得 ,解得

所以抛物线解析式为y=﹣x2+2x+3;


(2)

解:S有最大值.理由如下:

∵y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴M(1,4),

设直线BM的解析式为y=kx+n,

把B(3,0),M(1,4)代入得 ,解得

∴直线BM的解析式为y=﹣2x+6,

∵OD=m,

∴P(m,﹣2m+6)(1≤m<3),

∴S= m(﹣2m+6)=﹣m2+3m=﹣(m﹣ 2+

∵1≤m<3,

∴当m= 时,S有最大值,最大值为


(3)

解:存在.

∠PDC不可能为90°;

当∠DPC=90°时,则PD=OC=3,即﹣2m+6=3,解得m= ,此时P点坐标为( ,3),

当∠PCD=90°时,则PC2+CD2=PD2,即m2+(﹣2m+3)2+32+m2=(﹣2m+6)2

整理得m2+6m﹣9=0,解得m1=﹣3﹣3 (舍去),m2=﹣3+3

当m=﹣3+3 时,y=﹣2m+6=6﹣6 +6=12﹣6 ,此时P点坐标为(﹣3+3 ,12﹣6 ),

综上所述,当P点坐标为( ,3)或(﹣3+3 ,12﹣6 )时,△PCD为直角三角形.


【解析】(1)把B点和C点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)把(1)中的一般式配成顶点式可得到M(1,4),设直线BM的解析式为y=kx+n,再利用待定系数法求出直线BM的解析式,则P(m,﹣2m+6)(1≤m<3),于是根据三角形面积公式得到S=﹣m2+3m,然后根据二次函数的性质解决问题;(3)讨论:∠PDC不可能为90°;当∠DPC=90°时,易得﹣2m+6=3,解方程求出m即可得到此时P点坐标;当∠PCD=90°时,利用勾股定理得到和两点间的距离公式得到m2+(﹣2m+3)2+32+m2=(﹣2m+6)2
然后解方程求出满足条件的m的值即可得到此时P点坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】补全下列各题解题过程.

如图,EF∥AD,∠1 = ∠2,∠BAC = 70°,求 ∠AGD 的度数.

:∵EF∥AD 已知

∴∠2 = ( )

∵∠1=∠2 ( )

∴∠1=∠3 ( )

∴AB∥ ( )

∴∠BAC + = 180°( )

∵∠BAC = 70°(已知

∴∠AGD = _ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.

(1)求该抛物线的解析式;
(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.
(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF的取值范围为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级一班20名女生某次体育测试的成绩统计如下:

成绩(分)

60

70

80

90

100

人数(人)

1

5

x

y

2

(1)如果这20名女生体育成绩的平均分数是82分,求xy的值;

(2)(1)的条件下,设20名学生测试成绩的众数是a,中位数是b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.
请解答下列问题:
(1)本次调查的样本容量是
(2)补全条形统计图;
(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】服装店老板用45 000元购进一批羽绒服,由于深受顾客喜爱,很快售完.老板又用49 500元购进相同数量的该款羽绒服,但每件进价比第一批多了9元.根据题中信息,解答下列问题:

(Ⅰ)第一批羽绒服每件进价是多少元?

(Ⅱ)老板以每件120元的价格销售该款式羽绒服,当第二批羽绒服售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于14 000元,则剩余的羽绒服每件售价至少要多少元?(利润售价-进价)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】推理填空:如图ABCD,1=2,3=4,试说明ADBE.

解:∵ABCD(已知)

∴∠4=1+____________

∵∠3=4(已知)

∴∠3=1+____________

∵∠1=2(已知)

∴∠1+∠CAF=2+∠CAF_______

即∠_____=_____

∴∠3=____________

ADBE_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2).

(1)m,n的值;

(2)请结合图象直接写出不等式mx+n>x+n-2的解集.

查看答案和解析>>

同步练习册答案