【题目】如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.
(1)求二次函数的关系式;
(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,试判断S有最大值或最小值?并说明理由;
(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
【答案】
(1)
解:把B(3,0),C(0,3)代入y=﹣x2+bx+c得 ,解得 ,
所以抛物线解析式为y=﹣x2+2x+3;
(2)
解:S有最大值.理由如下:
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴M(1,4),
设直线BM的解析式为y=kx+n,
把B(3,0),M(1,4)代入得 ,解得 ,
∴直线BM的解析式为y=﹣2x+6,
∵OD=m,
∴P(m,﹣2m+6)(1≤m<3),
∴S= m(﹣2m+6)=﹣m2+3m=﹣(m﹣ )2+ ,
∵1≤m<3,
∴当m= 时,S有最大值,最大值为 ;
(3)
解:存在.
∠PDC不可能为90°;
当∠DPC=90°时,则PD=OC=3,即﹣2m+6=3,解得m= ,此时P点坐标为( ,3),
当∠PCD=90°时,则PC2+CD2=PD2,即m2+(﹣2m+3)2+32+m2=(﹣2m+6)2,
整理得m2+6m﹣9=0,解得m1=﹣3﹣3 (舍去),m2=﹣3+3 ,
当m=﹣3+3 时,y=﹣2m+6=6﹣6 +6=12﹣6 ,此时P点坐标为(﹣3+3 ,12﹣6 ),
综上所述,当P点坐标为( ,3)或(﹣3+3 ,12﹣6 )时,△PCD为直角三角形.
【解析】(1)把B点和C点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)把(1)中的一般式配成顶点式可得到M(1,4),设直线BM的解析式为y=kx+n,再利用待定系数法求出直线BM的解析式,则P(m,﹣2m+6)(1≤m<3),于是根据三角形面积公式得到S=﹣m2+3m,然后根据二次函数的性质解决问题;(3)讨论:∠PDC不可能为90°;当∠DPC=90°时,易得﹣2m+6=3,解方程求出m即可得到此时P点坐标;当∠PCD=90°时,利用勾股定理得到和两点间的距离公式得到m2+(﹣2m+3)2+32+m2=(﹣2m+6)2
然后解方程求出满足条件的m的值即可得到此时P点坐标.
科目:初中数学 来源: 题型:
【题目】补全下列各题解题过程.
如图,EF∥AD,∠1 = ∠2,∠BAC = 70°,求 ∠AGD 的度数.
解:∵EF∥AD ( 已知 )
∴∠2 = ( )
又∵∠1=∠2 ( )
∴∠1=∠3 ( )
∴AB∥ ( )
∴∠BAC + = 180°( )
∵∠BAC = 70°(已知 )
∴∠AGD = _ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.
(1)求该抛物线的解析式;
(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.
(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级一班20名女生某次体育测试的成绩统计如下:
成绩(分) | 60 | 70 | 80 | 90 | 100 |
人数(人) | 1 | 5 | x | y | 2 |
(1)如果这20名女生体育成绩的平均分数是82分,求x、y的值;
(2)在(1)的条件下,设20名学生测试成绩的众数是a,中位数是b,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.
请解答下列问题:
(1)本次调查的样本容量是;
(2)补全条形统计图;
(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】服装店老板用45 000元购进一批羽绒服,由于深受顾客喜爱,很快售完.老板又用49 500元购进相同数量的该款羽绒服,但每件进价比第一批多了9元.根据题中信息,解答下列问题:
(Ⅰ)第一批羽绒服每件进价是多少元?
(Ⅱ)老板以每件120元的价格销售该款式羽绒服,当第二批羽绒服售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于14 000元,则剩余的羽绒服每件售价至少要多少元?(利润售价-进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】推理填空:如图AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE.
解:∵AB∥CD(已知)
∴∠4=∠1+_____(_______)
∵∠3=∠4(已知)
∴∠3=∠1+_____(_______)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(_______)
即∠_____=∠_____
∴∠3=∠_____(_______)
∴AD∥BE(_______).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2).
(1)求m,n的值;
(2)请结合图象直接写出不等式mx+n>x+n-2的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com