精英家教网 > 初中数学 > 题目详情

【题目】 O 是直线 AB上一点,∠COD 是直角,OE平分∠BOC

(1)如图1,若∠DOE=25°,求∠AOC 的度数;

如图2,若∠DOEα,直接写出∠AOC的度数(用含α的式子表示);

(2)将图 1中的∠COD 绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE 与∠AOC 的度数之间的关系,写出你的结论,并说明理由.

【答案】(1)①AOC=50°;②∠AOC=2α;(2)∠DOEAOC,理由详见解析.

【解析】

(1)①首先求得∠COE的度数,然后根据角平分线的定义求得∠COB的度数,再根据∠AOC=180°﹣∠BOC即可求解;

②解法与①相同,把①中的25°改成α即可;

(2)把∠AOC的度数作为已知量,求得∠BOC的度数,然后根据角的平分线的定义求得∠COE的度数,再根据∠DOE=∠COD﹣∠COE求得∠DOE,即可解决.

(1)①∵∠COD=90°,∠DOE=25°,

∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,

OE平分BOC

∴∠BOC=2∠COE=130°,

∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;

②∵∠COD=90°,∠DOE=α,

∴∠COE=∠COD﹣∠DOE=90°﹣α,

OE平分BOC

∴∠BOC=2∠COE=180°﹣2α,

∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;

(2)∠DOEAOC,理由如下:

∵∠BOC=180°﹣∠AOC

OE平分BOC

∴∠COEBOC(180°﹣∠AOC)=90°﹣AOC

∵∠COD=90°,

∴∠DOE=90°﹣∠COE=90°﹣(90°﹣AOC)=AOC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD.
(1)求证:CD是⊙O的切线;
(2)若DC、AB的延长线相交于点E,且DE=12,AD=9,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程组:

(1)(代入法);

(2)(加减法);

(3)

4 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点ABCDE在同一直线上,且ACBDE是线段BC的中点.

(1)点E是线段AD的中点吗?说明理由;

(2)当AD=10,AB=3时,求线段BE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点E、F分别是BC、CD上的点,且CE=CF,点P、Q分别是AF、EF的中点,连接PD、PQ、DQ,则PQD的形状是(  )

A. 等腰三角形 B. 直角三角形

C. 等腰非直角三角形 D. 等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某广告公司招标了一批灯箱加工工程,需要在规定时间内加工1400个灯箱,该公司按一定速度加工5天后,发现按此速度加工下去会延期10天完工,于是又抽调了一批工人投入灯箱加工,使工作效率提高了50%,结果如期完成工作.

(1)求该公司前5天每天加多少个灯箱;

(2)求规定时间是多少天.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论: ①4a﹣b<0;
②abc<0;
③a+b+c<0;
④a﹣b+c>0;
⑤4a+2b+c>0.
其中错误的个数有(  )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案