【题目】如图,将两块直角三角板摆放在平面直角坐标系中,有,, ,且.现将绕点逆时针旋转,旋转角为.在旋转过程中,直线分别与直线,交于点,.
(1)当旋转角时,求点的坐标;
(2)在旋转过程中,当时,求直线的解析式;
(3)在旋转过程中,能否为等腰是三角形?若能,请求出所有满足条件的值;若不能,请说明理由.
【答案】(1);(2)或;(3)当为或或或时,为等腰三角形.
【解析】
(1)过点B作BH⊥x轴于点H,在Rt△AOB中,∠AOB=60°,OA=8,所以,再利用勾股定理求出OH、BH,即可解答;
(2)分两种情况:Ⅰ当点B在第一象限时(如图2),过点B作BM⊥OC于点M;Ⅱ当点B在第二象限时(如图3),过点B作BE⊥x轴于E,过点A作AF⊥BE于H;分别求出点A、B的坐标,利用待定系数法求解析式,即可解答;
(3)分三种情况:Ⅰ当0°<β<45°时(如图4);Ⅱ当45°<β<75°时(如图5);Ⅲ当75°<β<180°时,分三种情况解答:①FA=FG,②AF=AG,③GA=GF;根据等腰三角形的性质,角之间的和与差,即可解答.
解;(1)如图1,过点作轴于点.
在中,,,
∴∠OAB=30°
.
当,即时,则.
.
.
.
(2)①当点在第一象限时,如图2,过点作于点.
,.
,
.
点在轴上,
.
设直线的解析式为
由题意,得,
解得.
直线的解析式为.
②当点在第二象限时,如图3,过点作轴于点,过点作的延长线于点.
,.
又,
,
又,
,
,,
又,
,
,.
.
设直线的解析式为,
,
解得
直线的解析式为.
综上所述,直线的解析式为或.
(3)由题意可知,当时,可证得.
分为以下情况讨论:
I当时,如图4,则为钝角.
当时,有.
又,.
II当时,如图5,则为钝角.
当时,.
III当时,
①若,如图6,有
.
②若,如图7,有
.
.
③若,如图8,有.
.
,(舍去).
综上所述,当为或或或时,为等腰三角形.
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,C为⊙O上一点,OC=4,∠OAC=60°.
(Ⅰ)如图①,过点C作⊙O的切线,与BA的延长线交于点P,求∠P的大小;
(Ⅱ)如图②,P为AB上一点,CP延长线与⊙O交于点Q.若AQ=CQ,求∠APC的大小及PA的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年初,新冠肺炎肆虐全球.我国政府和人民采取了积极有效的防疫措施,疫情在我国得到了有效控制.小明为复学到药店购买口罩和一次性医用口罩.已知购买个口罩和个一次性医用口罩共需元;购买个口罩和个一次性医用罩共需元.
(1)求口罩与一次性医用口罩的单价;
(2)小明准备购买口罩和一次性医用口罩共个,且口罩的数量不少于一次性医用口罩数量的.请设计出最省钱的购买方案,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P.
(观察猜想)
①AE与BD的数量关系是 ;
②∠APD的度数为 .
(数学思考)
如图2,当点C在线段AB外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;
(拓展应用)
如图3,点E为四边形ABCD内一点,且满足∠AED=∠BEC=90°,AE=DE,BE=CE,对角线AC、BD交于点P,AC=10,则四边形ABCD的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于、两点(点在点的左边),与轴交于点,点是抛物线的顶点.
(1)求、、三点的坐标;
(2)连接,,,若点为抛物线上一动点,设点的横坐标为,当时,求的值(点不与点重合);
(3)连接,将沿轴正方向平移,设移动距离为,当点和点重合时,停止运动,设运动过程中与重叠部分的面积为,请直接写出与之间的函数关系式,并写出相应自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;
(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
(3)求两人相遇的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数解析式是( )
A. y=﹣x+8 B. y=﹣x+8 C. y=﹣x+3 D. y=﹣x+3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形,如图2.
①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)
②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于 点F,连接BE,∠F=45°.
(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com