精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y=kx+b与坐标轴交于A,B两点,其中点B的坐标为(0,4),tanBAO=,一条抛物线的顶点为坐标原点,且与直线y=kx+b交于点C(m,8),点P为线段BC上一动点(不与点B,点C重合),PDx轴于点D,交抛物线于点Q.

(1)求直线和抛物线的函数关系式;

(2)设点P的横坐标为t,线段PQ的长度为d,求出dt之间的函数关系式,并求出d的最大值;

(3)是否存在点P的位置,使得以点P,D,B为顶点的三角形是等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由.

【答案】(1)y=x+4,y=x2;(2)d=﹣t2+t+4,t=2时,d有最大值;(3)存在,P点坐标为(2+2,5+)或(,理由见解析

【解析】(1)利用三角形函数先求出A点坐标,再利用待定系数法即可求出抛物线的解析式;

(2)将点PQ的坐标用含t的式子表示出来,利用两点间的距离公式即可求出dt之间的函数关系式,利用顶点公式即可求出d的最大值;

(3)从PB=BDPB=PDBD=PD三种情况进行讨论即可.

解:(1)B(0,4),

OB=4,

RtAOB中,∵tanBAO==

OA=2OB=8,

A(﹣8,0),

A(﹣8,0),B(0,4)代入y=kx+b,解得

∴直线AB的解析式为y=x+4,

y=8时,x+4=8,解得x=8,则C(8,8),

设抛物线解析式为y=ax2

C(8,8)代入得64a=8,解得a=

∴抛物线的解析式为y=x2

(2)设Ptt+4)(0<t<8),则Qtt2),

d=t+4﹣t2

=﹣t2+t+4,

d=﹣t﹣2)2+

∴当t=2时,d有最大值

(3)存在.

B(0,4),Ptt+4),Dt,0),

PB2=t2+(t+4﹣4)2=t2DB2=t2+42=t2+16,PD2=(t+4)2=t2+4t+16,

PB=BD时,PBD为等腰三角形,即t2=t2+16,解得t1=8(舍去),t2=﹣8(舍去);

PB=PD时,PBD为等腰三角形,即t2=t2+4t+16,解得t1=2﹣2(舍去),t2=2+2,此时P点坐标为(2+2,5+

BD=PD时,PBD为等腰三角形,即t2+16=t2+4t+16,解得t1=0(舍去),t2=,此时P点坐标为();

综上所述,P点坐标为(2+2,5+)或().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,俄罗斯方块游戏中,图形经过平移使其填补空位,则正确的平移方式是(

[Failed to download image : http://192.168.0.10:8086/QBM/2019/8/9/2265110730670080/2266396395864065/STEM/34cd169bb880437797498d7a59a34864.png]

A.先向右平移5格,再向下平移3

B.先向右平移4格,再向下平移5

C.先向右平移4格,再向下平移4

D.先向右平移3格,再向下平移5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,三角形的三个顶点的位置如图,为三角形内一点,的坐标为

1)平移三角形,使点与原点重合,请画出平移后的三角形

2)直接写出的对应点的坐标;并写出平移的规律.

);

);

);

3)求三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8A型放大镜和5B型放大镜需用220元;若购买4A型放大镜和6B型放大镜需用152元.

(1)求每个A型放大镜和每个B型放大镜各多少元;

(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC,以AB为直径的⊙OBC,ACD,E两点,过点D作⊙O的切线,交AC于点F,交AB的延长线于点G.

(1)求证:EF=CF;

(2)若cosABC=,AB=10,求线段AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.

1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入管理费)

2)当每辆车的日租金为多少元时,每天的净收入最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明从家到学校上学,沿途需经过三个路口,每个路口都设有红、绿两种颜色的信号灯,在信号灯正常情况下:

1)请用树状图列举小明遇到交通信号灯的所有情况;

2)小明遇到两次绿色信号的概率有多大?

3)小明红绿色两种信号都遇到的概率有多大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数y=-+|x|的图象与性质.
小军根据学习函数的经验,对函数y=-+|x|的图象与性质进行了探究.
下面是小军的探究过程,请补充完整:
1)函数y=-+|x|的自变量x的取值范围是
2)表是yx的几组对应值.

x

-2

-1.9

-1.5

-1

-0.5

0

1

2

3

4

y

2

1.60

0.80

0

-0.72

-1.41

-0.37

0

0.76

1.55

在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;


3)观察图象,函数的最小值是
4)进一步探究,结合函数的图象,写出该函数的一条性质(函数最小值除外):

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若不等式3x6的解都能使关于x的一次不等式(m-1xm+5成立,且使关于x的分式方程= 有整数解,那么符合条件的所有整数m的值之和是______

查看答案和解析>>

同步练习册答案