【题目】如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.
(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;
(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标;
(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.
【答案】(1)图形见解析,C(3,﹣3);(2)图形见解析,A1(﹣2,1),B1(﹣1,4),C1(﹣3,3);(3)图形见解析,A2(﹣1,﹣2),B2(﹣4,﹣1),C2(﹣3,﹣3)
【解析】
(1)根据已知点的坐标,画出坐标系,由坐标系确定C点坐标;
(2)由关于原点中心对称性画△A1B1C1,可确定写出A1,B1,C1的坐标;
(3)根据网格结构找出点A、B、C绕点O顺时针旋转90°的对应点A2,B2,C2的位置,画△A2B2C2,可确定写出A2,B2,C2的坐标.
解:(1)坐标系如图所示,C(3,﹣3);
(2)△A1B1C1如图所示,A1(﹣2,1),B1(﹣1,4),C1(﹣3,3);
(3)△A2B2C2如图所示,A2(﹣1,﹣2),B2(﹣4,﹣1),C2(﹣3,﹣3).
科目:初中数学 来源: 题型:
【题目】已知直线y=﹣x+7a+1与直线y=2x﹣2a+4同时经过点P,点Q是以M(0,﹣1)为圆心,MO为半径的圆上的一个动点,则线段PQ的最小值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.
(1)已知CD=4cm,求AC的长;
(2)求证:AB=AC+CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB和BC组成圆的折弦,AB>BC,M是弧ABC的中点,MF⊥AB于F,则AF=FB+BC.
如图2,△ABC中,∠ABC=60°,AB=8,BC=6,D是AB上一点,BD=1,作DE⊥AB交△ABC的外接圆于E,连接EA,则∠EAC=_____°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线C:y=(x+2)[t(x+1)-(x+3)],其中-7≤t≤-2,且无论t 取任何符合条件的实数,点A,P 都在抛物线C 上.
(1)当t=-5时,求抛物线C 的对称轴;
(2)当-60≤n≤-30 时,判断点(1,n)是否在抛物线C上, 并说明理由;
(3)如图,若点A在x轴上,过点A作线段AP的垂线交y轴于点B,交抛物线C于点D,当点D的纵坐标为m+时,求S△PAD的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.
(1)求抛物线C1的表达式;
(2)直接用含t的代数式表达线段MN的长;
(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,E是BC的中点,连接BD,DE.
(1)若,求sinC;
(2)求证:DE是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
在数学活动课上,老师给出如下问题,让同学们展开探究活动:
[问题情境]
如图①,在中,,点为上一点,将线段绕点逆时针旋转,得到的对应线段为,过点作,交于点,请你根据上述条件,提出恰当的数学问题并解答.
[解决问题]
下面是学习小组提出的三个问题,请你解答这些问题:
(1)“兴趣”组提出的问题是:求证:;
(2)“实践”小组提出的问题是:如图②,若将沿的垂直平分线对折,得到,连接,则线段与有怎样的数量关系?请说明理由;
(3)“奋进”小组在“实践”小组探究的基础上,提出了如下问题:延长与交于点,连接,求证:四边形是矩形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com