精英家教网 > 初中数学 > 题目详情

【题目】下列说法:①一条直线有且只有一条垂线;②画出点P到直线l的距离;③两条直线相交就是垂直;④线段和射线也有垂线,其中正确的有_____

【答案】

【解析】

利用垂线的性质,两条直线的位置关系解答即可.

①应为经过一点有且只有一条直线与已知直线垂直,所以错误;

②应为量出点P到直线l的距离,所以错误;

③在平面内,不重合的两条直线的位置关系只有两种:相交与平行,垂直是相交的一种特殊情况,所以错误;

直线、线段和射线都有垂线,所以正确.

故答案为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图6,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2.5小时后到达C点,总共航行了208千米,已知水流的速度是2千米/时。

(1)求游艇在静水中的速度。
(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需多少时间?(结果保留一位小数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12.

(1)求证:AD⊥BC;
(2)求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某个样本的频数分布直方图中一共有4组,从左至右的组中值依次为5,8,11,14,频数依次为5,4,6,5,则频率为0.2的一组为( )
A.6.5~9.5
B.9.5~12.5
C.8~11
D.5~8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同)

(1)填空:BC的长是

(2)求S关于x的函数关系式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线经过O、A、E三点.

(1)求此抛物线的解析式;

(2)求AD的长;

(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCDDCE80°,则BEF=( )

A. 120° B. 110° C. 100° D. 80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,Ab=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:

(1)当t为何值时,△AOP是等腰三角形?

(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;

(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;

(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是(  )
①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

同步练习册答案