精英家教网 > 初中数学 > 题目详情

如图,⊙O是△ABC的外接圆,圆心O在△ABC的高CD上,点E、F分别是边AC和BC的中点,请你判断四边形CEDF的形状,并说明理由.

解:四边形CEDF为菱形.
证明:∵AB为弦,CD为直径所在的直线且AB⊥CD,
∴AD=BD,
又∵CD=CD,
∴△CAD≌△CBD,
∴AC=BC;
又∵E,F分别为AC,BC的中点,D为AB中点,
∴DF=CE=AC,DE=CF=BC,
∴DE=DF=CE=CF,
∴四边形CEDF为菱形.
分析:由垂径定理知,点D是AB的中点,有AD=BD,可证△CAD≌△CBD,可得AC=BC;由E,F分别为AC,BC的中点,D为AB中点,得DF=CE=AC,DE=CF=BC,即DE=DF=CE=CF,从而可得四边形CEDF为菱形.
点评:本题考查了垂径定理、三角形全等、三角形中位线的性质以及菱形的判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O是△ABC的外接圆,OD⊥AB于点D、交⊙O于点E,∠C=60°,如果⊙O的半径为2,那么OD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,AD是△ABC的高,且AD平分∠BAC,请指出∠B与∠C的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔东南州)如图,⊙O是△ABC的外接圆,圆心O在AB上,过点B作⊙O的切线交AC的延长线于点D.
(1)求证:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的长.

查看答案和解析>>

同步练习册答案