【题目】如图,直线y=x+6与y轴交于点A,与x轴交于点B,点E为线段AB的中点,∠ABO的平分线BD与y轴相交于点D,A、C两点关于x轴对称.
(1)一动点P从点E出发,沿适当的路径运动到直线BC上的点F,再沿适当的路径运动到点D处.当P的运动路径最短时,求此时点F的坐标及点P所走最短路径的长;
(2)点E沿直线y=3水平向右运动得点E',平面内是否存在点M使得以D、B、M、E'为顶点的四边形为菱形,若存在,请直接写出点E′的坐标;若不存在,请说明理由.
【答案】(1),2;(2)(,3)或(,3)
【解析】
(1)首先根据直线与坐标轴的交点求出交点坐标,然后根据直角三角形和角平分线以及对称的性质得出点C、D、E的坐标,进而得出直线BC解析式,再根据对称性质确定最短路径,求出直线E′D解析式,联立两个函数即可得出点F坐标;
(2)根据菱形的性质,分类讨论:BD为边和BD为对角线,求解即可.
(1)∵直线y=x+6与y轴交于点A,与x轴交于点B,
∴点A(0,6),点B(2,0),
∵点E为线段AB的中点,
∴点E(,3)
∵tan∠ABO=,
∴∠ABO=60°,
∵BD平分∠ABO,
∴∠ABD=∠DBO=30°,且OB=2,
∴DO=2,BD=2DO=4
∴点D(0,2)
∵A、C两点关于x轴对称.
∴点C坐标为(0,﹣6)
∵设直线BC解析式为:y=kx+b,
∴
∴解得:k=,b=﹣6
∴直线BC解析式为:y=x﹣6
如图,作点D关于直线BC的对称点D'(4,﹣2),连接ED'交BC于点F,
∴点P所走最短路径为D'E的长,
∴D'E==2
设直线ED'解析式为:y=mx+n,
∴
解得:m=﹣,n=
∴直线ED'解析式为:y=﹣x+,
∴
∴
∴点F坐标(,)
(2)若BD为边,设点E'(x,3)
∵四边形BDE'M是菱形,
∴BD=DE'=4
∴4=
∴x=,
∴点E'(,3)
若BD为对角线,
∵四边形BE'DM是菱形
∴DE'=BE',
∴(x﹣0)2+(3﹣2)2=(x﹣2)2+32,
∴x=
∴点E'坐标(,3)
综上,点E′的坐标为(,3)或(,3).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角些标系中,二次函数y=ax2+bx﹣的图象经过点A(﹣1,0),C(2,0),与y轴交于点B,其对称轴与x轴交于点D.
(1)求二次函数的表达式及其顶点的坐标;
(2)若P为y轴上的一个动点,连接PD,求PB+PD的最小值;
(3)M(x,t)为抛物线对称轴上一个动点,若平面内存在点N,使得以A、B、M、N为顶点的四边形为菱形,则这样的点N共有 个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),C(0,3).
(1)求二次函数的解析式;
(2)在图中,画出二次函数的图象;
(3)根据图象,直接写出当y≤0时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是我市某小学,在位于学校南偏西15°方向距离120米的C点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即沿路线CF赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(≈3.6,结果精确到1秒)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在校园歌手大赛中,甲、乙两位同学的表现分外突出,现场A、B、C、D、E、F六位评委的打分情况以及随机抽取的50名同学的民意调查结果分别如下统计表和不完整的条形统计图:(说明:随机抽取的50名同学每人必须从“好”、“较好”、“一般”中选一票投给每个选手)
A | B | C | D | E | F | |
甲 | 89 | 97 | 90 | 93 | 95 | 94 |
乙 | 89 | 92 | 90 | 97 | 94 | 94 |
(1)a= ,六位评委对乙同学所打分数的中位数是 ,并补全条形统计图;
(2)学校规定评分标准如下:去掉评委评分中最高和最低分,再算平均分并将平均分与民意测评分按2:3计算最后得分.求甲、乙两位同学的最后得分.(民意测评分=“好”票数×2+“较好”票数×1+“一般”票数×0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点E是正方形ABCD中边AB的中点.
(1)如图1,点T为线段DE上一点,连接BT并延长交AD于点M,连接AT并延长交CD于点N,且AM=DN.试判断线段AN与线段BM的关系,并证明;求证:点M是线段AD的黄金分割点.
(2)如图2,在AD边上取一点M,满足AM2=DMDA时,连接BM交DE于点T,连接AT并延长交DC于点N,求tan∠MTD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线图像的一部分,抛物线的项点坐标是A(1,3),与轴的一个交点B(4,0),直线与抛物线交于,两点,下列结论:①:②;③方程有两个相等的实数根:④当时,有;⑤抛物线与轴的另一个交点是(-1,0),其中正确的是( )
A.①②③B.①③④C.①③⑤D.②④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD是⊙O的直径,点B在⊙O上,连接BC、BD,直线AB与CD的延长线相交于点A,AB2=ADAC,OE∥BD交直线AB于点E,OE与BC相交于点F.
(1)求证:直线AE是⊙O的切线;
(2)若⊙O的半径为3,cosA=,求OF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与坐标轴分别交于,,三点,连接,.
(1)直接写出,,三点的坐标;
(2)点是线段上一点(不与,重合),过点作轴的垂线交抛物线于点,连接.若点关于直线的对称点恰好在轴上,求出点的坐标;
(3)在平面内是否存在一点,使关于点的对称(点,,分别是点,,的对称点)恰好有两个顶点落在该抛物线上?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com