【题目】已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.
(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
【答案】(1)等腰三角形;理由见解析;(2)直角三角形;理由见解析;(3) =0, =-1
【解析】试题分析:(1)、将x=-1代入方程得出a+c﹣2b+a﹣c=0。从而得出结论;(2)、根据方程有两个相等的实数根,则根的判别式为零,从而得出答案;(3)、将a=b=c代入,从而得出2ax2+2ax=0即x2+x=0,然后求出方程的解.
试题解析:(1)、△ABC是等腰三角形;
理由:∵x=﹣1是方程的根, ∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,∴a=b, ∴△ABC是等腰三角形;
(2)、∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,∴a2=b2+c2, ∴△ABC是直角三角形;
(3)、当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用适当的符号表示a的2倍与4的差比a的3倍小的关系式( )
A. 2a+4<3a B. 2a-4<3a C. 2a-4≥3a D. 2a+4≤3a
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,等边三角形ABD与等边三角形ACE具有公共顶点A,连接CD,BE,交于点P.
(1)观察度量, 的度数为____.(直接写出结果)
(2)若绕点A将△ACE旋转,使得,请你画出变化后的图形.(示意图)
(3)在(2)的条件下,求出的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线()经过点,与轴的负半轴交于点,与轴交于点,且,抛物线的顶点为.
(1)求这条抛物线的表达式;
(2)联结、、、,求四边形的面积;
(3)如果点在轴的正半轴上,且,求点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com