分析 过O作OC垂直于AB,根据垂径定理可得C为AB的中点,由AB的长求出AC的长,又OA=OB,OC垂直于AB,根据三线合一得到OC为角平分线,根据∠AOB的度数求出∠AOC的度数为60°,根据直角三角形的两锐角互余可得∠A=30°,可设OC为xcm,根据30°所对的直角边等于斜边的一半可得OA=2xcm,再由AC的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,可得出OA的长,即为圆的半径.
解答
解:过O作OC⊥AB,垂足为C,如图所示:
∵OC⊥AB,且AB=4$\sqrt{3}$cm,
∴AC=BC=$\frac{1}{2}$AB=2$\sqrt{3}$cm,
又∵OA=OB,OC⊥AB,
∴OC为∠AOB的平分线,∠AOB=120°
∴∠AOC=∠BOC=$\frac{1}{2}$∠AOB=60°,
在Rt△AOC中,∠ACO=90°,∠AOC=60°,
∴∠A=30°,
设OC=xcm,则有OA=2xcm,
根据勾股定理得:AC2+OC2=OA2,即(2$\sqrt{3}$)2+x2=4x2,
解得:x=2,或x=-2(舍去),
则半径OA=2x=4cm.
故答案为:4.
点评 此题考查了垂径定理,勾股定理,等腰三角形的性质,以及含30°直角三角形的性质,利用了方程的思想,在圆中遇到弦,常常过圆心作弦的垂线,根据垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 与标准质量的差(单位:千克) | -3 | -2 | -1.5 | 0 | 1 | 2.5 |
| 筐 数 | 1 | 4 | 2 | 3 | 2 | 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com