精英家教网 > 初中数学 > 题目详情

如图,AB是半圆O的直径,AC切半圆于A,CB交⊙O于D,DE切⊙O于D,BE⊥DE于点E,BD=10,DE、BE是方程x2-2(m+2)x+2m2-m+3=0的两个根(BE>DE).
求:(1)m的值;
(2)⊙O的直径;
(3)AC的长.

解:(1)∵DE、BE是方程的两个根,
∴DE+BE=2(m+2),DE•BE=2m2-m+3.
又∵BE⊥DE,∴∠E=90°,
∴DE2+BE2=BD2
(DE+BE)2-2DE•BE=102即4(m+2)2-2(2m2-m+3)=100,
∴m=5.
当m=5时,△=-4m2+20m+4=240>0,
∴m的值为5.

(2)连接DO.
∵DE为⊙O的切线,
∴DE⊥OD,∠ODE=∠E=90°.
∴∠ODE+∠E=180°,∴OD∥BE.
∴∠ODB=∠DBE.
又∵OD=OB,∴∠ODB=∠OBD,
∴∠OBD=∠DBE.
∵m=5,∴原方程为x2-14x+48=0.
∴x1=6,x2=8.
∵BE>DE,
∴BE=8,DE=6.∴BD=10.
连接AD.
∵AB是直径,
∴∠ADB=90°.∴∠ADB=∠E=90°.
又∵∠OBD=∠DBE,
∴△ABD∽△DBE.
,即
∴AB=

(3)∵AC切⊙O于点A,
∴AC⊥AB,∠CAB=90°.
∴△ACB∽△EDB,

∴AC=
分析:(1)根据根与系数的关系结合勾股定理求解;
(2)连接OD、AD.根据(1)中结论DE、BE的长,证明△ABD与△BDE相似求解;
(3)结合(2),根据射影定理即可求解.
点评:此题考查了切线的性质、相似三角形的判定和性质、一元二次方程根与系数的关系等知识点,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB是半圆O的直径,AC是弦,点P从点B开始沿BA边向点A以1cm/s的速度移动,若AB长为10cm,点O到AC的距离为4cm.
(1)求弦AC的长;
(2)问经过几秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是半圆O的直径,OD是半径,BM切半圆于点B,OC与弦AD平行交BM于点C.
(1)求证:CD是半圆O的切线;
(2)若AB的长为4,点D在半圆O上运动,当AD的长为1时,求点A到直线CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB是半圆O的直径,点D是半圆上一动点,AB=10,AC=8,当△ACD是等腰三角形时,点D到AB的距离是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是半圆O的直径,以OA为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E,则下列结论:①S△O′OE=
1
2
S△AOC2;②点D时AC的中点;③
AC
=2AD;④四边形O′DEO是菱形.其中正确的结论是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,F为垂足,交AC于点C使∠BED=∠C.请判断直线AC与圆O的位置关系,并证明你的结论.

查看答案和解析>>

同步练习册答案