精英家教网 > 初中数学 > 题目详情

【题目】如图,已知⊙O上依次有A、B、C、D四个点, = ,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.
(1)若⊙O的半径为3,∠DAB=120°,求劣弧 的长;
(2)求证:BF= BD;
(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.

【答案】
(1)解:连接OB,OD,

∵∠DAB=120°,∴ 所对圆心角的度数为240°,

∴∠BOD=360°﹣240°=120°,

∵⊙O的半径为3,

∴劣弧 的长为: ×π×3=2π;


(2)证明:连接AC,

∵AB=BE,∴点B为AE的中点,

∵F是EC的中点,∴BF为△EAC的中位线,

∴BF= AC,

=

+ = +

=

∴BD=AC,

∴BF= BD;


(3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,

∵BF为△EAC的中位线,

∴BF∥AC,

∴∠FBE=∠CAE,

=

∴∠CAB=∠DBA,

∵由作法可知BP⊥AE,

∴∠GBP=∠FBP,

∵G为BD的中点,

∴BG= BD,

∴BG=BF,

在△PBG和△PBF中,

∴△PBG≌△PBF(SAS),

∴PG=PF.


【解析】(1)利用圆心角定理进而得出∠BOD=120°,再利用弧长公式求出劣弧 的长;(2)利用三角形中位线定理得出BF= AC,再利用圆心角定理得出 = ,进而得出BF= BD;(3)首先过点B作AE的垂线,与⊙O的交点即为所求的点P,得出BP⊥AE,进而证明△PBG≌△PBF(SAS),求出PG=PF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.
(1)判断线段DE、FG的位置关系,并说明理由;
(2)连结CG,求证:四边形CBEG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m). (参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中, = ,以点B为圆心,BC长为半径画弧,交边AD于点E.若AEED= ,则矩形ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正五边形ABCDE中,对角线AD,AC与EB分别相交于点M,N.下列结论错误的是(
A.四边形EDCN是菱形
B.四边形MNCD是等腰梯形
C.△AEM与△CBN相似
D.△AEN与△EDM全等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.
(1)⊙P移动到与边OB相切时(如图),切点为D,求劣弧 的长;
(2)⊙P移动到与边OB相交于点E,F,若EF=4 cm,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).

(1)四边形ABCD的面积为
(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;
(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据: ≈1.73)

查看答案和解析>>

同步练习册答案