精英家教网 > 初中数学 > 题目详情

【题目】已知∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.
(1)⊙P移动到与边OB相切时(如图),切点为D,求劣弧 的长;
(2)⊙P移动到与边OB相交于点E,F,若EF=4 cm,求OC的长.

【答案】
(1)解:连接DP、CP,

∵∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.

∴∠DPC=120°,

∴劣弧 的长为: =2πcm


(2)解:可分两种情况,

①如图2,当P在∠AOB内部,连接PE,PC,过点P做PM⊥EF于点M,延长CP交OB于点N,

∵EF=4 cm,∴EM=2 cm,

在Rt△EPM中,PM= =1cm,

∵∠AOB=60°,∴∠PNM=30°,

∴PN=2PM=2cm,

∴NC=PN+PC=5cm,

在Rt△OCN中,OC=NC×tan30°=5× = cm.

②如图3,当P在∠AOB外部,连接PF,PC,PC交EF于点N,过点P作PM⊥EF于点M,

由①可知,PN=2cm,

∴NC=PC﹣PN=1cm,

在Rt△OCN中,OC=NC×tan30°=1× = cm.

综上所述,OC的长为 cm或 cm.


【解析】(1)根据∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C,利用弧长公式得出弧 的长;(2)分两种情况分析,①当P在∠AOB内部,根据⊙P移动到与边OB相交于点E,F,利用垂径定理得出EF=4 cm,得出EM=2 cm,进而得出OC的长. ②当P在∠AOB外部,连接PF,PC,PC交EF于点N,过点P作PM⊥EF于点M,进而求出即可.
【考点精析】掌握含30度角的直角三角形和勾股定理的概念是解答本题的根本,需要知道在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.
(1)求∠D的度数;
(2)若CD=2,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O上依次有A、B、C、D四个点, = ,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.
(1)若⊙O的半径为3,∠DAB=120°,求劣弧 的长;
(2)求证:BF= BD;
(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校“振兴阅读工程”的开展情况,教育部门对该校初中生的阅读情况进行了随机问卷调查,绘制了如下图表: 初中生喜爱的文学作品种类调查统计表

种类

小说

散文

传记

科普

军事

诗歌

其他

人数

72

8

21

19

15

2

13


根据上述图表提供的信息,解答下列问题:
(1)喜爱小说的人数占被调查人数的百分比是多少?初中生每天阅读时间的中位数在哪个时间段内?
(2)将写读后感、笔记积累、画圈点读等三种方式称为有记忆阅读.请估计该校现有的2000名初中生中,能进行有记忆阅读的人数约是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个扇形的弧长是10πcm,面积是60πcm2 , 则此扇形的圆心角的度数是(
A.300°
B.150°
C.120°
D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:

年份

2014

2015

2016

2017(预计)

快递件总量(亿件)

140

207

310

450

电商包裹件(亿件)

98

153

235

351


(1)请选择适当的统计图,描述2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);
(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列算式运算结果正确的是(
A.(2x52=2x10
B.(﹣3)2=
C.(a+1)2=a2+1
D.a﹣(a﹣b)=﹣b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.
(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;
(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数 (k为常数,k≠0)的图象上,且这三点的纵坐标y1 , y2 , y3构成“和谐三组数”,求实数t的值;
(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1 , 0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2 , y2),C(x3 , y3)两点.
①求证:A,B,C三点的横坐标x1 , x2 , x3构成“和谐三组数”;
②若a>2b>3c,x2=1,求点P( )与原点O的距离OP的取值范围.

查看答案和解析>>

同步练习册答案