【题目】如图所示,平行四边形ABCD和平行四边形CDEF有公共边CD,边AB和EF在同一条直线上,AC⊥CD且AC=AF,过点A作AH⊥BC交CF于点G,交BC于点H,连接EG.
(1)若AE=2,CD=5,则△BCF的面积为 ;△BCF的周长为 ;
(2)求证:BC=AG+EG.
【答案】(1)3,;(2)见解析
【解析】
(1)根据平行和垂直的特点求出BF,AF,再根据勾股定理求出CD,根据FP与BA的比值求出面积,再根据勾股定理求CF,BC即可得到周长.
(2)在AD上截取AM=AG,连接CM,证△FAG≌△CAM;证△EFG≌△DCM.
解:(1)面积为3;周长为
∵四边形ABCD和四边形CDEF都是平行四边形,
∴EF=CD,AB=CD,AB∥CD
∴EF=AB=CD=5
∴AE=EF-AE=5-2=3
∴BF=5-3=2
过F作FP⊥BC
则FP:AH=BF:AB=2:5,
∴ ,
∵AC⊥CD,AB∥CD,
∴AB⊥AC,即∠BAC=90°,
∵AC=AF=3,
∴CF= ,BC= ,
∴
∴△BCF的面积为3,△BCF周长为
(2)在AD上截取AM=AG,连接CM,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC
∵AH⊥BC
∴AD⊥AH
∴∠DAH=90°
∵∠BAC=90°
∴∠DAH=∠BAC
∴∠DAH-∠CAH =∠BAC-∠CAH
∴∠BAH=∠CAD
∵AF=AC
∴△FAG≌△CAM
∴FG=CM,∠ACM=∠AFG
∵四边形CDEF是平行四边形,
∴EF∥CD,EF=CD,
∴∠DCF+∠AFC=180°,
∵AF=AC, ∠BAC=90°,
∴∠AFC=∠ACF=45°,
∴∠DCF=180°-∠AFC=135°,
∴∠ACM=∠AFG=45°,
∴∠DCM=∠FCD-∠ACF-∠ACM=45°,
∴∠AFG=∠DCM,
∴△EFG≌△DCM,
∴EG=DM,
∵AD=AM+DM,
∴AD=AG+EG,
∵AD=BC,
∴BC=AG+EG.
科目:初中数学 来源: 题型:
【题目】兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.
(1)第一批该款式T恤衫每件进价是多少元?
(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小东同学根据函数的学习经验,对函数y 进行了探究,下面是他的探究过程:
(1)已知x=-3时 0;x=1 时 0,化简:
①当x<-3时,y= ;
②当-3≤x≤1时,y= ;
③当x>1时,y= .
(2)在平面直角坐标系中画出y=|x﹣1|+|x+3|的图象,根据图象,写出该函数的一条性质: ;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂计划生产两种产品共60件,需购买甲、乙两种材料.生产一件产品需甲种材料4千克;生产一件产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产产品不少于38件,问符合生产条件的生产方案有哪几种?
(3)在(2)的条件下,若生产一件产品需加工费40元,生产一件产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低(成本=材料费+加工费)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.
(1)试求袋中蓝球的个数;
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E, DF∥AB交BC于点F .
(1)求证:四边形BEDF是菱形
(2)如果∠A=80°,∠C=30°,求∠BDE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】ABCD的两条对角线AC,BD交于点O,点E是CD的中点,△DOE的面积为l0cm2,则△ABD的面积为( )
A.15cm2B.20cm2C.30cm2D.40cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程
(1)求证:不论k取什么实数值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长为,另两边的长b、c恰好是这个方程的两个根,求△ABC的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com