精英家教网 > 初中数学 > 题目详情

【题目】如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A(﹣2,b),B两点.

(1)求一次函数的表达式;

(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.

【答案】(1);(2) m的值为19.

【解析】(1)先利用反比例函数解析式y求出b=4,得到A点坐标为(-2,4),然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式为y=x+5;
(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=x+5-m,则直线y=x+5-m与反比例函数有且只有一个公共点,即方程组只有一组解,然后消去y得到关于x的一元二次方程,再根据判别式的意义得到关于m的方程,最后解方程求出m的值.

1)把A(﹣2b)代入

b= =4

所以A点坐标为(﹣24),

A(﹣24)代入y=kx+5

得﹣2k+5=4,解得k=

所以一次函数解析式为y=x+5

2)将直线AB向下平移mm0)个单位长度得直线解析式为y=x+5m

根据题意方程组只有一组解,

消去y得﹣=x+5m

整理得x2﹣(m5x+8=0

=m52×8=0

解得m=9m=1

m的值为19

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC2,∠B=∠C40°,点D在线段BC上运动(点D不与点BC重合),连接AD,作∠ADE40°,DE交线段AC于点E

1)当∠BDA110°时,∠EDC   °,∠DEC   °;点DBC的运动过程中,∠BDA逐渐变   (填“大”或“小”);

2)当DC等于多少时,△ABD≌△DCE,请说明理由.

3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的材料:勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为ab,斜边为c,然后按图1的方法将它们摆成正方形.

由图1可以得到(a+b2=4×ab+c2

整理,得a2+2ab+b2=2ab+c2

所以a2+b2=c2

如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述方法证明勾股定理.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB90°,OA36cmOB12cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以下是两张不同类型火车的车票:(D×××表示动车,G×××表示高铁):

1)根据车票中的信息填空:两车行驶方向   ,出发时刻   (填相同不同);

2)已知该动车和高铁的平均速度分别为200km/h300km/h,如果两车均按车票信息准时出发,且同时到达终点,求AB两地之间的距离;

3)在(2)的条件下,请求出在什么时刻两车相距100km

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市电器销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:

销售时段

销售量

销售收入

A型号

B型号

第一周

3

5

1800

第二周

4

10

3100

(1)求A、B两种型号的电风扇的销售价.

(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇30台,求A种型号的电风扇最多能采购多少台?

(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出采购方案.若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度 h(单位:m)近似满足公式 t=(不考虑风速的影响)

(1) 50m 高空抛物到落地所需时间 t1 是多少 s, 100m 高空抛物到落地所 需时间 t2 是多少 s;

(2)t2 t1 的多少倍

(3)经过 1.5s,高空抛物下落的高度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1), 为直线上一点,过点作射线, 将一直角的直角项点放在点处,即反向延长射线,得到射线.

(1)的位置如图(1)所示时,使,若,求的度数.

(2)的位置如图(2)所示时,使一边的内部,且恰好平分,

:射线的反向延长线是否平分请说明理由注意:不能用问题中的条件

(3)的位置如图所示时,射线的内部,若.试探究之间的数量关系,不需要证明,直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰RtADE,连接CD,当CD最大时,∠DEC的度数为(

A. 60° B. 75° C. 90° D. 67.5°

查看答案和解析>>

同步练习册答案