精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,O是坐标原点,直角梯形AOCD的顶点A的坐标为
(0,),点D的坐标为(1,),点C轴的正半轴上,过点O且以点D为顶点的抛物线经过点C,点PCD的中点.

(1)求抛物线的解析式及点P的坐标;
(2) 在轴右侧的抛物线上是否存在点Q,使以Q为圆心的圆同时与轴、直线OP相切.若存在,请求出满足条件的点Q的坐标;若不存在,请说明理由;
(3)点M为线段OP上一动点(不与O点重合),过点OMD的圆与轴的正半轴交于点N.求证:OM+ON为定值.
(4)在轴上找一点H,使∠PHD最大.试求出点H的坐标.
(1) (2) (3)H                               

试题分析:解:(1) 设抛物线的解析式为
将(0,0)代入,得 ,
∴抛物线的解析式为      2分
                                                      4分

(2)若⊙Q在直线OP上方,则QD点重合,此时Q1;           
若⊙Q在直线OP下方,与轴、直线OP切于E、F
QE=QFQE轴,QFOP
∴OQ平分∠EOF
∵∠EOF="120°"   ∴∠FOQ=60°
∵∠POC=30°,则∠QOC=30°                                  
Q,则
解得(舍去),      ∴              8分
(3)∵在过点OMD的圆中,有∠MOD=∠NOD       ∴MD= ND
易得OD平分∠AOPDA轴,DPOP DA= DP
可证得△NAD≌△MPD(HL)  ∴MP= AN  
∴OM+ON= OP-MP+OA+AN=OP+OA=2OA=
OM+ON=,即OM+ON为定值.                              11分
(4)作过P、D两点且与轴相切于点H的圆S,
则由圆周角大于圆外角可知,∠PHD最大.                         12分
,则由HS=SD=SP
可得,
H                                14分

点评:此题比较综合,把几何图形和二次函数结合起来考察学生,要求学生都知识的掌握程度比较高,解答过程稍微比较复杂,是区分学生成绩的题目。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知抛物线y=-x2bx+c经过点A(0,1)、B(3,)两点,BC⊥x轴,垂足为C.点P是线段AB上的一动点(不与A,B重合),过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.

(1)求此抛物线的函数表达式;
(2)连结AM、BM,设△AMB的面积为S,求S关于t的函数关系式,并求出S的最大值;
(3)连结PC,当t为何值时,四边形PMBC是菱形.(10分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).

(1)求抛物线的解析式;
(2)求点B的坐标及直线BC的解析式;
(3)如图,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,求△BDC的面积的最大值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

“天天乐”商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?
(3)在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润,应该将销售单价定为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知⊙P的半径为2,圆心P在抛物线上运动,当⊙P与轴相切时,
圆心P的坐标为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商厦将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价50x元,商场每天销售这种冰箱的利润是y元,请写出yx之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A的坐标为(7,0),点B的坐标为(3,4),

(1)求经过O、A、B三点的抛物线解析式;
(2)将线段AB绕A点顺时针旋转75°至AC,直接写出点C的坐标.
(3)在y轴上找一点P,第一象限找一点Q,使得以O、B、Q、P为顶点的四边形是菱形,求出点Q的坐标;
(4)△OAB的边OB上有一动点M,过M作MN//OA交AB于N,将△BMN沿MN翻折得△DMN,设MN=x,△DMN与△OAB重叠部分的面积为y,求出y与x之间的函数关系式,并求出重叠部分面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为x=1;现有:①a>0,②c<0,③当x>1时,y随x的增大而减小,④x=3是一元二次方程ax2+bx+c=0的一个根,则上述结论中正确的是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知二次函数的图像与轴交于AB两点,与轴交于点C,连接AC,点P是抛物线上的一个动点,记△APC的面积为S,当S=2时,相应的点P的个数是(   )
A.4 个B.3个C.2个D.1个

查看答案和解析>>

同步练习册答案