精英家教网 > 初中数学 > 题目详情
(2013•扬州)如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为
30
30
分析:过A作AE∥DC交BC于E,得出等边三角形ABE和平行四边形ADCE,推出AB=AD=DC=BE=CE,求出AD长,即可得出答案.
解答:解:
过A作AE∥DC交BC于E,
∵AD∥BC,
∴四边形ADCE是平行四边形,
∴AD=EC=DC,AE=DC,
∵AB=CD,
∴AB=AE,
∴△ABE是等边三角形,
∴BE=AB=AE=DC=AD=CE,
∵BC=12,
∴AB=AD=DC=6,
∴梯形ABCD的周长是AD+DC+BC+AB=6+6+12+6=30,
故答案为:30.
点评:本题考查了平行四边形性质和判定,等边三角形的性质和判定,等腰梯形性质的应用,解此题的关键是能把等腰梯形转化成平行四边形和等边三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•扬州)如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在
AB
上的点D处,折痕交OA于点C,则
AD
的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•扬州)如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为
AB
上两点,且∠MEB=∠NFB=60°,则EM+FN=
33
33

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•扬州)如图,抛物线y=x2-2x-8交y轴于点A,交x轴正半轴于点B.
(1)求直线AB对应的函数关系式;
(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•扬州)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.
(1)求y与x的函数关系式;
(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;
(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.

查看答案和解析>>

同步练习册答案