精英家教网 > 初中数学 > 题目详情
如图,AB是自动喷灌设备的水管,点A在地面,点B高出地面1.5米.在B处有一自动旋转的喷水头,在每一瞬间,喷出的水流呈抛物线状,喷头B与水流最高点C的连线与水平线成45°角,水流的最高点C与喷头B高出2米,在如图的坐标系中,水流的落地点D到点A的距离是______米.
如图,建立直角坐标系,过C点作CE⊥y轴于E,过C点作CF⊥x轴于F,
∴B(0,1.5),
∴∠CBE=45°,
∴EC=EB=2米,
∵CF=AB+BE=2+1.5=3.5,
∴C(2,3.5)
设抛物线解析式为:y=a(x-2)2+3.5,
又∵抛物线过点B,
∴1.5=a(0-2)2+3.5
∴a=-
1
2

∴y=-
1
2
(x-2)2+3.5=-
1
2
x2+2x+
3
2

∴所求抛物线解析式为:y=-
1
2
x2+2x+
3
2

∵抛物线与x轴相交时,y=0,
0=-
1
2
x2+2x+
3
2

x1=2+
7
x2=2-
7
(舍去)
∴D( 2+
7
,0)
∴水流落点D到A点的距离为:2+
7
米.
故答案为:2+
7

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(1)将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2=______;
(2)如图,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=ax2+bx+c的最小值是5
3
4
,且a:b:c=2:3:4,则a=______,b=______,c=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,ABDC,AB=2,DC=10,AD=BC=5,点M、N分别在AD、BC上运动,并保持MNAB,ME⊥DC,NF⊥DC,垂足分别为E、F.
(1)求梯形ABCD的面积;
(2)探究一:四边形MNFE的面积有无最大值?若有,请求出这个最大值;若无,请说明理由;
(3)探究二:四边形MNFE能否为正方形?若能,请求出正方形的面积;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点E(x1,y1)、F(x2,y2)在抛物线y=ax2+bx+c的对称轴的同侧(点E在点F的左侧),过点E、F分别作x轴的垂线,分别交x轴于点B、D,交直线y=2ax+b于点A、C,设S为直线AB、CD与x轴、直线y=2ax+b所围成图形的面积.则S与y1、y2的数量关系式为:S=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.
(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;
(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商家经销一种绿茶,已知绿茶每千克成本50元,在试销时间内发现:
单价定为每千克70元时,月销售量为l00千克,销售单价每提高5元,月销量减少10,设该绿茶的销售单价为每千克x元(x≥70),月销售利润为y(元).
(1)求y与x之间的函数关系式(不必写出自变量x的取值范围);
(2)若用于装修门面已投资3000元,该商家在第一个月里,销售单价为每千克85元,在第二个月里受物价部门干预,销售单价不得高于90元,在第二个月销售结束后发现这两个月不仅收回投资,而且刚好获得1700元的利润,求第二个月时该绿茶的销售单价为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定义[p,q]为一次函数y=px+q的特征数.
(1)若特征数是[2,k-2]的一次函数为正比例函数,求k的值;
(2)设点A,B分别为抛物线y=(x+m)(x-2)与x,y轴的交点,其中m>0,且△OAB的面积为4,O为原点,求图象过A,B两点的一次函数的特征数.

查看答案和解析>>

同步练习册答案