精英家教网 > 初中数学 > 题目详情
如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.
(1)根据题意,得P(2,4);M(4,0).
设抛物线的解析式为:y=a(x-2)2+4,
过点M(4,0),则4a+4=0,
∴a=-1,y=-(x-2)2+4=4x-x2,即y=-x2+4x;

(2)设C(x,0),
则B(4-x,0),D(x,4x-x2),A(4-x,4x-x2).
∵l=2(BC+CD)
=2[(4-2x)+(4x-x2)]
=2(-x2+2x+4)
=-2(x-1)2+10,
∵当x=1时,l有最大值,即l最大值=10;

(3)存在.应该一共存在4个点,OP的垂直平分线与抛物线有两个交点,
以O为圆心,OP为半径作圆,圆与抛物线也有两个交点(除P点以外),
这四个点都符合题意.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,AB是自动喷灌设备的水管,点A在地面,点B高出地面1.5米.在B处有一自动旋转的喷水头,在每一瞬间,喷出的水流呈抛物线状,喷头B与水流最高点C的连线与水平线成45°角,水流的最高点C与喷头B高出2米,在如图的坐标系中,水流的落地点D到点A的距离是______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.
(1)求m的值;
(2)求点B的坐标;
(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0)使S△ABD=S△ABC,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm).
(1)写出?ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围.
(2)当x取什么值时,y的值最大?并求最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,半径为1的半圆内接等腰梯形,其下底是半圆的直径,试求:
(1)它的周长y与腰长x之间的函数关系式,并求出自变量x的取值范围.
(2)当腰长为何值时,周长有最大值?这个最大值为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=
1
4
x2于点A、B,交抛物线C2:y=
1
9
x2于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.
【猜想与证明】
填表:
m123
AB
CD

由上表猜想:对任意m(m>0)均有
AB
CD
=______.请证明你的猜想.
【探究与应用】
(1)利用上面的结论,可得△AOB与△CQD面积比为______;
(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;
【联想与拓展】
如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

今有网球从斜坡O点处抛出,网球的抛物线是y=4x-
1
2
x2
的图象的一段,斜坡的截线OA在一次函数y=
1
2
x
的图象的一段,建立如图所示的直角坐标系.
求:(1)网球抛出的最高点的坐标.
(2)网球在斜坡的落点A的垂直高度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个长方形的周长是8cm,一边长是xcm,则这个长方形的面积y与边长x的函数关系用图象表示为(  )
A.B.C.≈D.

查看答案和解析>>

同步练习册答案