【题目】已知,如图在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,则∠OED的度数为( )
A.10°B.20°C.30°D.35°
【答案】B
【解析】
先根据平行线的性质求出∠AOB的度数,由直角三角形的性质得出∠BOC的度数,再根据点A关于直线OB的对称点D恰好在BC上得出OB是线段AD的垂直平分线,故可得出∠BOD的度数,进而得出∠DOC的度数,由点E与点O关于直线BC对称可知BC是OE的垂直平分线,故可得出∠DOC=∠OED.
解:连接OD,
∵BC⊥x轴于点C,∠OBC=35°,
∴∠AOB=∠OBC=35°,∠BOC=90°-35°=55°.
∵点A关于直线OB的对称点D恰好在BC上,
∴OB是线段AD的垂直平分线,
∴∠BOD=∠AOB=35°,
∴∠DOC=∠BOC-∠BOD=55°-35°=20°.
∵点E与点O关于直线BC对称,
∴BC是OE的垂直平分线,
∴∠DOC=∠OED=20°.
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△OAB是边长为2的等边三角形过点A的直线与轴交于点E,
(1)求点E坐标。
(2)求过A,O,E三点的抛物线表达式。
(3)若P是(2)中求出的抛物线AE段上的一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC
(1)填空:如图1,∠B= °,∠C= °;
(2)如图2,若M为线段BC上的点,过M作MH⊥AD,交AD的延长线于点H,分别交直线AB、AC与点N、E.
①求证:△ANE是等腰三角形;
②线段BN、CE、CD之间的数量关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一把三角尺放在边长为2的正方形ABCD上(正方形四个内角为90°,四边都相等),并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC交于点Q。
探究:(1)当点Q在边CD 上时,线段PQ 与线段PB之间有怎样的大小关系?试证明你观察得到结论;
(2)当点Q在边CD 上时,如果四边形 PBCQ 的面积为1,求AP长度;
(3)当点P在线段AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q的位置,并求出相应的AP的长;如果不可能,试说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,△ABC绕点C顺时针旋转一定角度得到△DEC,点D恰好落在AB边上,连接AE. 求:
(1)旋转角的度数;
(2)AE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形中,为正方形的外角的角平分线,点在线段上,过点作于点,连接,过点作于点,交射线于点.
()如图1,若点与点重合.
①依题意补全图1.
②判断与的数量关系并加以证明.
()如图2,若点恰好在线段上,正方形的边长为,请写出求长的思路(可以不写出计算结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,CD为AB边上的高,AD=8,CD=4,BD=3.动点P从点A出发,沿射线AB运动,速度为1个单位/秒,运动时间为t秒.
(1)当t为何值时,△PDC≌△BDC;
(2)当t为何值时,△PBC是等腰三角形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com