精英家教网 > 初中数学 > 题目详情
已知如图∠B=90°AB=AD=BC,DE⊥AC,求证:BE=DC.

【答案】分析:根据三角形的内角和定理求出∠C,进一步求出∠DEC,根据等角对等边得到DE=DC,连接AE,根据全等三角形的判定证明Rt△ABE≌Rt△ADE,推出BE=DE,即可得到答案.
解答:证明:∵∠B=90°AB=BC,
∴∠A=∠C=(180°-90°)=45°,
∵DE⊥AC,
∴∠EDC=90°,
∴∠DEC=90°-∠C=45°=∠C,
∴DE=DC,
连接AE,∵∠B=90°,∠EDC=90°,AB=AD,AE=AE,
∴Rt△ABE≌Rt△ADE,
∴BE=DE,
∴BE=DC.
点评:本题主要考查对三角形的内角和定理,等腰三角形的性质和判定,直角三角形的性质,垂线的定义,全等三角形的性质和判定等知识点的理解和掌握,能根据性质证出BE=DE和DE=DC是证明此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知如图∠B=90°AB=AD=BC,DE⊥AC,求证:BE=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•重庆)已知如图,Rt△ABC中,∠C=90°,tan∠DAC=
3
5
,sin∠B=
5
13
,BD=9,求AB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知如图∠B=90°AB=AD=BC,DE⊥AC,求证:BE=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ACB=90º,以AC为直径的⊙O交AB于D点,过D作⊙O的切线交BC于E点,EF⊥AB于F点,

连OE交DC于P,则下列结论:其中正确的有     .

①BC=2DE;           ②OE∥AB;         ③DE=PD;         ④AC•DF=DE•CD.

A.①②③    B.①③④   C.①②④    D.①②③④

 


查看答案和解析>>

同步练习册答案