精英家教网 > 初中数学 > 题目详情
12.如图,点C、D、E、F都在线段AB上,点E是AC的中点,点F是BD的中点,若EF=18,CD=6,则线段AB的长为(  )
A.24B.30C.32D.42

分析 根据线段的和差,可得(EC+DF),根据线段中点的性质,可得(AC+BD),再根据线段的和差,可得答案.

解答 解:由线段的和差,得
EC+DF=EF-CD=18-6=12.
由点E是AC的中点,点F是BD的中点,得
AC=2EC,BD=2DF.
AC+BD=2(EC+DF)=2×12=24.
由线段的和差,得
AB=AC+CD+DB=24+6=30.
故选:B.

点评 本题考查了两点间的距离,利用线段的和差得出(EC+DF)是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于点F,sin∠B=$\frac{\sqrt{2}}{2}$,且AE+AF=2$\sqrt{2}$,则平行四边形ABCD的周长为8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.
下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理
∵AB=AD
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合
∵∠ADC=∠B=90°
∴∠FDG=180°,点F、D、G共线根据SAS,易证△AFG≌△AFE,从而可得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF.
请写出推理过程:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在△ABC中,∠C=90°,∠A=30°.点B是线段AC上一点,且AB=40cm,∠DBC=75°.
(1)求点B到AD的距离;
(2)求线段CD的长(结果用根号表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知△ABC如图所示,A(-4,1),B(-1,1),C(-4,3),在网格中按要求画图:
(1)画出△ABC关于y轴对称的△A1B1C1
(2)画出△ABC绕点A顺时针旋转90°后的△AB2C2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC--CD--DE,如图所示,从甲队开始工作时计时.
(1)直接写出乙队铺设完的路面长y(米)与时间x(时)的函数关系式;
(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,下面结论:
①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④PQ∥AC.
其中结论正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.分解因式:9a(x-y)+3b(x-y)=3(x-y)(3a+b).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.顶角是36°的等腰三角形称为黄金三角形,设黄金三角形的底边与腰之比为m.如图,在黄金△ABC中,AB=AC=1,BD平分底角ABC,得到第二个黄金△BCD,CE平分底角BCD,得到第三个黄金△CDE,以此类推,则第2016个黄金三角形的周长为m2015(2+m)(用含m的式子表示).

查看答案和解析>>

同步练习册答案