精英家教网 > 初中数学 > 题目详情

如图,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,连接A′B′.当点P从点A移到点B时,A′B′的中点的位置


  1. A.
    在平分AB的某直线上移动
  2. B.
    在垂直AB的某直线上移动
  3. C.
    数学公式上移动
  4. D.
    保持固定不移动
D
分析:此题根据梯形的中位线定理,首先明确A′B′的中点的位置在过点O垂直于AB的直线上,再根据梯形的中位线定理,得到要求的中点到点O的距离是一个定值,即可说明该中点是一个定点.
解答:由题意知,四边形AA′B′B是直角梯形.
设A′B′的中点为D,则OD是直角梯形的中位线,即OD⊥AB.
又OD=(AA′+BB′)=(AP+BP)=AB.
故OD的长又是定值,则点D是一定点.
故选D.
点评:本题要熟练运用梯形的中位线定理进行分析.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,在△ABC中,BD是∠ABC的平分线,DE∥BC,交AB与点E,∠A=60°,∠BDC=105°,则∠BDE=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,E是BC的中点,且∠AEC=∠DCE,下列结论中正确的有(  )
①BF=
1
2
DF                   ②S△AFD=2S△EFB
③四边形AECD是等腰梯形      ④∠AEB=∠ADC.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,AD是它的角平分线,且EB=FC,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:BD=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,试猜想EF与AD之间有什么关系?并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,D是BC边的中点,E是AD的中点,连接BE并延长到点F,使EF=BE,连接AF、CF.
(1)试说明ADCF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCF是矩形,并说明你的理由.

查看答案和解析>>

同步练习册答案