【题目】如图,在△ ABC中,∠ ABC、∠ ACB的平分线交于点O。
(1)若∠ABC=40°,∠ ACB=50°,则∠BOC=_______
(2)若∠ABC+∠ ACB=lO0°,则∠BOC=________
(3)若∠A=70°,则∠BOC=_________
(4)若∠BOC=140°,则∠A=________
(5)你能发现∠ BOC与∠ A之间有什么数量关系吗?写出并说明理由。
【答案】(1)、135°;(2)、130°;(3)、125°;(4)、100°;(5)、∠BOC=90°+0.5∠A
【解析】
试题分析:根据角平分线的性质以及三角形内角和定理得出∠OBC和∠OCB与∠A之间的关系,然后根据△BOC的内角和定理得出∠BOC与∠A的关系.
试题解析:(1)135° (2)130° (3)125° (4)100°
(5)、BO平分∠ABC, CO平分∠ABC
∴∠OBC=0.5∠ABC ∠OCB=0.5∠ACB
∴∠OBC+∠OCB=0.5∠ABC+0.5∠ACB=
0.5(180-∠A)=90-0.5∠A
∴∠O=180-(∠OBC+∠OCB)=180-(90-0.5∠A)=90°+0.5∠A
科目:初中数学 来源: 题型:
【题目】某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1 440元,求这一天有几名工人加工甲种零件.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于点P(a,b)和点Q(a,b′),给出如下定义:
若,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5).
(1)①点(,1)的限变点的坐标是 ;
②在点A(-2,-1),B(-1,2)中有一个点是函数y=图象上某一个点的限变点,这个点是 ;
(2)若点P在函数y=-x+3(-2≤x≤k,k>-2)的图象上,其限变点Q的纵坐标b′的取值范围是-5≤b′≤2,求k的取值范围;
(3)若点P在关于x的二次函数y= x2-2tx+t2+t的图象上,其限变点Q的纵坐标b′的取值范围是b′≥m或b′<n,其中m>n.令s=m-n,求s关于t的函数解析式并直接写出s的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.
(1)求证:DE⊥BE;
(2)如果OE⊥CD,求证:BD CE=CD DE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com