精英家教网 > 初中数学 > 题目详情
8.计算:2tan30°-|1-$\sqrt{3}$|+($\sqrt{2}$+π)0+$\sqrt{\frac{1}{3}}$.

分析 首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.

解答 解:2tan30°-|1-$\sqrt{3}$|+($\sqrt{2}$+π)0+$\sqrt{\frac{1}{3}}$
=$2×\frac{{\sqrt{3}}}{3}-(\sqrt{3}-1)+1+\frac{{\sqrt{3}}}{3}$
=2

点评 此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图所示,A、B是4×5网格中的格点,网格中的每个小正方形的边长为1.
(1)请在图一中画出一个等腰三角形ABC,且点C在格点上.
(2)请在图二中画出一个面积等于3的钝角三角形ABD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.图1,图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.
(1)如图1,在小正方形的顶点上确定一点C,连接AC、BC,使得△ABC为直角三角形,其面积为5,并直接写出△ABC的周长;
(2)如图2,在小正方形的顶点上确定一点D,连接AD、BD,使得△ABD中有一个内角为45°,且面积为3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.无论m为何值,二次函数y=x2+(2-m)x+m的图象总经过定点(1,3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在一个不透明的盒子中装有3个形状大小完全一样的小球,上面分别有标号1,2,-1.
(1)将球搅匀,从盒中一次取出两个小球,用树状图或列表的方法,求两标号互为相反数的概率;
(2)将球搅匀,摸出一个球将其标号记为k,放回后搅匀,再从中摸出一个球,将其标号记为b.则一次函数
y=kx+b的图象不经过第三象限的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.小明和小亮用6张背面完全相同的纸牌进行摸牌游戏,游戏规则如下:将牌面分别标有数字1、3、6的三张纸牌给小明,将牌面分别标有数字2、4、5的三张纸牌给小亮,小明小亮分别将纸牌背面朝上,从各自的三张纸牌中随机抽出一张,并将抽出的两张卡片上的数字相加,如果和为偶数,则小明获胜;如果和为奇数,则小亮获胜.
(1)小明抽到标有数字6的纸牌的概率为$\frac{1}{3}$;
(2)请用树状图或列表的方法求小亮获胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.计算:$\root{3}{8}$-$\sqrt{\frac{1}{3}}$×$\sqrt{27}$×3-1=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在?ABCD中,∠BAD的平分线AE交DC于点E,若∠DAE=25°,求∠C、∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.∠α与∠β的两边分别平行,且∠α=(x+10)°,∠β=(2x-40)°,求∠α的度数.

查看答案和解析>>

同步练习册答案