精英家教网 > 初中数学 > 题目详情
18.如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF.
(1)求证:DE=AF;
(2)求∠AOE的度数.

分析 (1)首先证明△ABE≌△BCF,再证明△ADF≌△DCE即可解决问题.
(2)根据平角的定义即可解决.

解答 (1)证明:在△ABE和△BCF中,
∵四边形ABCD是正方形,
∴∠ABE=∠BCF=90°,AB=BC=CD,
在△ABE和△BCF中,
$\left\{\begin{array}{l}{AB=CB}\\{AE=BF}\end{array}\right.$
∴△ABE≌△BCF(HL),
∴BE=CF,
∵BC=CD,
∴EC=DF,
在△ADF和△DCE中,
$\left\{\begin{array}{l}{AD=BC}\\{∠ADF=∠BCF}\\{DF=CF}\end{array}\right.$,
∴△ADF≌△DCE,
∴DE=AF.

(2)∵∠AOE是平角,
∴∠AOE=180°.

点评 本题考查正方形的性质、全等三角形的判定和性质等知识,解题的关键是相交添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.如图,点C在反比例函数y=$\frac{1}{x}$(x>0)的图象上,CB⊥x轴于点B,延长BC至A,使得AC=BC,连接AO交反比例函数的图象于点D,连接BD,OC交于点E,随着点C的横坐标的增大,图中阴影部分面积S1+S2的大小变化情况是(  )
A.一直减小B.一直不变C.先减小后增大D.先增大后减小

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列说法中错误的是(  )
A.$\frac{1}{2}$是0.25的一个平方根B.正数a的两个平方根的和为0
C.$\frac{9}{16}$的平方根是$\frac{3}{4}$D.当x≠0时,-x2没有平方根

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.化简下列各式:
(1)4(a+b)2-2(a+b)(2a-2b)            
(2)(m+2)÷(m-1+$\frac{2m+1}{m+1}$)-$\frac{1}{m}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:△ABC为等腰直角三角形,AB=AC=2,GA=CD=1,连接BD,过点A向BD作垂线,交BC于点F,BD于点E,连接CF,求证:∠G=∠D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:如图,E是正方形ABCD对角线AC上一点,且AE=AB,EF⊥AC,交BC于F.求证:BF=EC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.直角梯形ABCD中,上底为3,一个下底角为30°,斜腰长等于4,则梯形的面积为6+2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.若a+$\frac{1}{b}$=1,b+$\frac{1}{c}$=1,求c+$\frac{1}{a}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.△ABC为等边三角形,以AB边为腰作等腰RtABD,AC与BD交于点E,连接CD,过点D作DF⊥BC交BC延长线于点F.
(1)如图1,若DF=1,求AE的长;
(2)如图2,将△CDF绕点D顺时针旋转至△C1DF1的位置,点C,F的对应点分别为C1、F1.连接AF1,BC1,点G是BC1的中点,连接AG,求证:AF1=$\sqrt{2}$AG.

查看答案和解析>>

同步练习册答案