精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C(0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.

(1)求该二次函数的解析式;
(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE面积S的最大值;
(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.

【答案】
(1)

解:∵B(1,0),C(0,3),

∴OB=1,OC=3.

∵△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.

∴OA=OC=3,

∴A(﹣3,0),

∵点A,B,C在抛物线上,

∴二次函数的解析式为y=﹣x2﹣2x+3


(2)

解:设点P(x,0),则PB=1﹣x,

∵A(﹣3,0),B(1,0),

∴AB=4,

∵C(0,3),

∴OC=3,

∴SABC= AB×OC=6,

∵PE∥AC,

∴△BPE∽△BAC,

∴SPBE= (1﹣x)2

∴SPCE=SPBC﹣SPBE= PB×OC﹣ (1﹣x)2= (1﹣x)×3﹣ (1﹣x)2=﹣ (x+1)2+

当x=﹣1时,SPCE的最大值为


(3)

解:∵二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,

∴顶点坐标(﹣1,4),

∵△OMQ为等腰三角形,OM为底,

∴MQ=OQ,

=

∴8x2+18x=7=0,

∴x=

∴y= 或y=

∴Q( ),或( ).


【解析】(1)先求出点A坐标,再用待定系数法求出抛物线解析式;(2)先求出SPCE=SPBC﹣SPBE=﹣ (x﹣1)2+ ,即可求出最大面积;(3)先求出抛物线顶点坐标,由等腰三角形的两腰相等建立方程求出点Q坐标.
【考点精析】本题主要考查了二次函数的图象和二次函数的性质的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若关x的函数y=kx2+2x-1的图像与x轴仅有一个交点,则实数k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+2(m+l)x﹣m+1.以下四个结论:
①不论m取何值,图象始终过点( ,2 );
②当﹣3<m<0时,抛物线与x轴没有交点:
③当x>﹣m﹣2时,y随x的增大而增大;
④当m=﹣ 时,抛物线的顶点达到最高位置.
请你分别判断四个结论的真假,并给出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,直径AF平分∠BAC,交BC于点D.
(1)如图1,求证:AB=AC;
(2)如图2,延长BA到点E,连接ED、EC,ED交AC于点G,且ED=EC,求证:∠EGC=∠ECA+2∠ACB;
(3)如图3,在(2)的条件下,当BC是⊙O的直径时,取DC的中点M,连接AM并延长交圆于点N,且EG=5,连接CN并求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.
(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简与计算
(1)( ﹣2)0+( 1+4cos30°﹣|﹣ |.
(2)先化简,再求值: ÷( ﹣a﹣2),其中a= ﹣3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给定直线l:y=kx,抛物线C:y=ax2+bx+1.

(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;
(2)若把直线l向上平移k2+1个单位长度得到直线l′,则无论非零实数k取何值,直线l′与抛物线C都只有一个交点.
①求此抛物线的解析式;
②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )

A.(﹣1,0)
B.(1,﹣2)
C.(1,1)
D.(﹣1,﹣1)

查看答案和解析>>

同步练习册答案