精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣51),B(﹣22),C(﹣14),请按下列要求画图:

1)将△ABC先向右平移4个单位长度、再向下平移1个单位长度,得到△A1B1C1,画出△A1B1C1

2)画出与△ABC关于原点O成中心对称的△A2B2C2,并直接写出点A2的坐标.

【答案】(1)画图形如图所示见解析,(2)画图形如图所示见解析,点A2(5,-1)

【解析】

(1)将三个顶点分别向右平移4个单位长度、再向下平移1个单位长度,得到对应点,再顺次连接即可得;

(2)将ABC的三个顶点关于原点O成中心对称的对称点,再顺次连接可得.

(1)画图形如图所示,

(2)画图形如图所示,点A2(5,-1)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我县盛产绿色蔬菜,生产销售一种绿色蔬菜,若在市场上直接销售,每吨利润为800元,经粗加工销售,每吨利润可达2000元,经精加工后销售,每吨利润涨至2500元.我县一家农工商公司采购这种蔬菜若干吨生产销售,若单独进行精加工,需要30天才能完成,若单独进行粗加工,需要20天才能完成.已知每天单独粗加工比单独精加工多生产10吨.

1)试问这家农工商公司采购这种蔬菜共多少吨?

2)由于两种加工方式不能同时进行受季节条件限制,公司必须在24天内将这批蔬菜全部销售或加工完毕,为此该公司研制了三种可行方案:

方案一:将蔬菜全部进行粗加工;

方案二:尽可能多的对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好24天完成,你认为选择哪种方案获利最多?请通过计算说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量某建筑物BC的高度,小明先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地而上向建筑物前进了50m到达D处,此时遇到一斜坡,坡度i=1: ,沿着斜坡前进20米到达E处测得建筑物顶部的仰角是45°,(坡度i=1: 是指坡面的铅直高度FE与水平宽度DE的比).请你计算出该建筑物BC的高度.(取 =1.732,结果精确到0.1m).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CN是等边的外角内部的一条射线,点A关于CN的对称点为D,连接ADBDCD,其中ADBD分别交射线CN于点EP

(1)依题意补全图形;

2)若,求的大小(用含的式子表示);

3)用等式表示线段 之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元.(销售利润=销售价﹣进货价)

(1)求y与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;
(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;
(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为(
A.7.2 cm
B.5.4 cm
C.3.6 cm
D.0.6 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000/2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为1202

若购买者一次性付清所有房款,开发商有两种优惠方案:

方案一:降价8%,另外每套楼房赠送a元装修基金;

方案二:降价10%,没有其他赠送.

1)请写出售价y(元/2)与楼层x1≤x≤23x取整数)之间的函数关系式;

2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线1上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB

1OA=______cmOB=______cm

2)若点C是线段AB上一点(点C不与点AB重合),且满足AC=CO+CB,求CO的长;

3)若动点PQ分别从AB同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts),当点P与点Q重合时,PQ两点停止运动.求当t为何值时,2OP-OQ=4cm);

查看答案和解析>>

同步练习册答案