精英家教网 > 初中数学 > 题目详情
学校计划将120名学生平均分成若干个读书小组,若每个小组比原计划多1人,则要比原计划少分出6个小组,那么原计划要分成的小组数是
 
考点:分式方程的应用
专题:
分析:设原计划要分成的小组数是x个,则实际分成(x-6)个小组,根据实际每个小组比原计划多1人,列方程求解.
解答:解:设原计划要分成的小组数是x个,则实际分成(x-6)个小组,
由题意得,
120
x-6
-
120
x
=1,
解得:x=30,
经检验,x=30是原分式方程的解,且符合题意.
故答案为:30.
点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为了了解某中学初三年级250名学生中考的数学成绩,从中抽取了50名学生的成绩进行分析,得频率分布表:
60.5~70.5 3 a
70.5~80.5 6 0.12
80.5~90.5 9 0.18
90.5~100.5 17 0.34
100.5~110.5 b 0.2
110.5~120.5 5 0.1
合    计 50 1
(1)在这次抽样分析中,样本容量是
 

(2)求频率分布表中的数据a、b.
(3)估计该校数学成绩在90.5~120.5范围内人数约是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读下面的材料:
(1)锐角三角函数概念:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,称sinA=
a
c
,sinB=
b
c
是两个锐角∠A,∠B的“正弦”,特殊情况:直角的正弦值为1,即sin90°=1,也就是sinC=
c
c
=1.
由sinA=
a
c
,可得c=
a
sinA
;由sinB=
b
c
,可得c=
b
sinB

而c=
c
1
=
c
sin90°
=
c
sinC
,于是就有
a
sinA
=
b
sinB
=
c
sinC

(2)其实,对于任意的锐角△ABC,上述结论仍然成立,即三角形各边与对角的正弦之比相等,我们称之为“正弦定理”,我们可以利用三角形面积公式证明其正确性.
证明:如图1作AD⊥BC于D则在Rt△ABD中,sinB=
AD
c

∴AD=c•sinB,∴S△ABC=
1
2
a•AD=
1
2
ac•sinB,
在Rt△ACD中,sinC=
AD
b
,∴AD=b•sinC.
∴S△ABC=
1
2
a•AD=
1
2
ab•sinC.同理可得S△ABC=
1
2
bc•sinA.
因此有S△ABC=
1
2
ac•sinB=
1
2
ab•sinC=
1
2
bc•sinA.
也就是=ac•sinB=ab•sinC=bc•sinA.
每项都除以abc,得
sinB
b
=
sinC
c
=
sinA
a
,故
a
sinA
=
b
sinB
=
c
sinC

请你根据对上面材料的理解,解答下列问题:
(1)在锐角△ABC中,∠B=60°,∠C=45°,c=2,求b;
(2)求问题(1)中△ABC的面积;
(3)求sin75°的值(以上均求精确值,结果带根号的保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

求1+2+22+23+…+22013的值,可令S=1+2+22+23+…+22013,则2S=2+22+23+…+22014,因此2S-S=22014-1.仿照以上推理,计算出1+5+52+53+…+52014=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若1-m-n=0,则2m2+4mn+2n2-6的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的角平分线,DE∥AB交AC于点E,AB=8,AC=6,则DE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形ABCD中,AD=4,CD=1,以AD为直径作半圆O,则阴影部分面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:2×(-3)+18×(
1
3
)2-20140

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC中,AB=BC=a,AC=2b且a>
2
b.△ECD由△ABC沿BC方向平移得到,连接BE交AC于点O,连接AE.

(1)判断四边形ABCE是怎样的四边形,并说明理由;
(2)如本题图2,P是线段BC上一动点(不与点B,C重合),连接PO并延长交线段AE于点Q,再作QR⊥BC于R.试探究:点P移动到何处时,△PQR与△AOB相似?

查看答案和解析>>

同步练习册答案