精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为

【答案】4
【解析】解:OC交BE于F,如图,∵AB为⊙O的直径,
∴∠AEB=90°,
∵AD⊥l,
∴BE∥CD,
∵CD为切线,
∴OC⊥CD,
∴OC⊥BE,
∴四边形CDEF为矩形,
∴CD=EF,
在Rt△ABE中,BE= = =8,
∵OF⊥BE,
∴BF=EF=4,
∴CD=4.
故答案为4.

OC交BE于F,如图,有圆周角定理得到∠AEB=90°,加上AD⊥l,则可判断BE∥CD,再利用切线的性质得OC⊥CD,则OC⊥BE,原式可判断四边形CDEF为矩形,所以CD=EF,接着利用勾股定理计算出BE,然后利用垂径定理得到EF的长,从而得到CD的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.
(1)当⊙O的半径为2时,
①在点P1 ,0),P2 ),P3 ,0)中,⊙O的关联点是
②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.
(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣(a+b)x2﹣2cx+a﹣b中,a、b、c是△ABC的三边.
(1)当抛物线与x轴只有一个交点时,判断△ABC是什么形状;
(2)当x=﹣ 时,该函数有最大值 ,判断△ABC是什么形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:

x

﹣5

﹣4

﹣3

﹣2

﹣1

0

y

4

0

﹣2

﹣2

0

4

下列说法正确的是(
A.抛物线的开口向下
B.当x>﹣3时,y随x的增大而增大
C.二次函数的最小值是﹣2
D.抛物线的对称轴是x=﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内 上一点,∠BMO=120°,则⊙C的半径长为(

A.6
B.5
C.3
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明是个爱动脑筋的孩子,他在学完与圆有关的角圆周角、圆心角后,意犹未尽,又查阅到了与圆有关的另一种角﹣﹣﹣﹣﹣﹣弦切角.请同学们先仔细阅读下面的材料,再完成后面的问题.
材料:顶点在圆上,一边与圆相交,另一边与圆相切的角叫做弦切角.如图1,弧 是弦切角∠PAB所夹的弧,他发现弦切角与它所夹的弧所对的圆周角有关系.

问题1:如图2,直线DB切⊙O于点A,∠PCA是圆周角,当圆心O位于边AC上时,
求证:∠PAD=∠PCA,请你写出这个证明过程.
问题拓展:
如果圆心O不在∠PCA的边上,∠PAD=∠PCA还成立吗?如图3,当圆心O在∠PCA的内部时,小明证明了这个结论是成立的.他的思路是:作直线AE,联结PE,由问题1的结论可知∠PAD=∠PEA,而∠PCA=∠PEA,从而证明∠PAD=∠PC.
问题2:如图4,当圆心O在∠PCA的外部时,∠PAD=∠PCA仍然成立.请你仿照小明的思路证明这个结论.
运用:如图5,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F.求证:EF∥BC.(提示:可以直接使用本题中的结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(4m+1)x+2m﹣1=0;
(1)求证:不论m 任何实数,方程总有两个不相等的实数根;
(2)若方程的两根为x1、x2且满足 ,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,且过点A (3,0),二次函数图象的对称轴是x=1.下列结论:①b2>4ac;②ac>0; ③a﹣b+c>0; ④4a+2b+c<0.其中错误的结论有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线y=ax2+ +c经过原点O和A(4,2),与x轴交于点C,点M、N同时从原点O出发,点M以2个单位/秒的速度沿y轴正方向运动,点N以1个单位/秒的速度沿x轴正方向运动,当其中一个点停止运动时,另一点也随之停止.

(1)求抛物线的解析式和点C的坐标;
(2)在点M、N运动过程中,
①若线段MN与OA交于点G,试判断MN与OA的位置关系,并说明理由;
②若线段MN与抛物线相交于点P,探索:是否存在某一时刻t,使得以O、P、A、C为顶点的四边形是等腰梯形?若存在,请求出t值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案