精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程x2+(4m+1)x+2m﹣1=0;
(1)求证:不论m 任何实数,方程总有两个不相等的实数根;
(2)若方程的两根为x1、x2且满足 ,求m的值.

【答案】
(1)证明:△=(4m+1)2﹣4(2m﹣1)

=16m2+8m+1﹣8m+4=16m2+5>0,

∴不论m为任何实数,方程总有两个不相等的实数根


(2)解:∵ ,即 =﹣

∴由根与系数的关系可得 =﹣

解得 m=﹣

经检验得出m=﹣ 是原方程的根,

即m的值为﹣


【解析】(1)要证明方程总有两个不相等的实数根,那么只要证明△>0即可.(2)因为 = =﹣ ,所以由根与系数的关系可得 =﹣ ,解方程可得m的值.
【考点精析】通过灵活运用求根公式和根与系数的关系,掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则 的长(
A.2π
B.π
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是四边形ABCD的对角线BD上的一点,∠BAE=∠CBD=∠DAC.

(1)求证:DEAB=BCAE;
(2)求证:∠AED+∠ADC=180°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=﹣x2+2x+3的顶点为P,与x轴的两个交点为A,B,那么△ABP的面积等于(
A.16
B.8
C.6
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(﹣2,3)、B(﹣1,2)、C(﹣3,1),△ABC绕点O顺时针旋转90°后得到△A1B1C1

(1)在正方形网格中作出△A1B1C1
(2)在x轴上找一点D,使DB+DB1的值最小,并求出D点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:

(1)此次抽样调査中.共调査了名中学生家长;
(2)将图①补充完整;
(3)根据抽样调查结果.请你估计我市城区80000名中学生家长中有多少名家长持反对态度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若ab>0,则函数y=ax+b与y= (a≠0)在同一直角坐标系中的图象可能是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案