精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=﹣(a+b)x2﹣2cx+a﹣b中,a、b、c是△ABC的三边.
(1)当抛物线与x轴只有一个交点时,判断△ABC是什么形状;
(2)当x=﹣ 时,该函数有最大值 ,判断△ABC是什么形状.

【答案】
(1)解:当抛物线与x轴只有一个交点时,△ABC是直角三角形;理由如下:

当抛物线与x轴只有一个交点时,△=0,

即(﹣2c)2﹣4×[﹣(a+b](a﹣b)=0,

整理得c2+a2=b2

∴△ABC是直角三角形


(2)解:△ABC是等边三角形;理由如下:

根据题意得:﹣ =﹣ ,即c= 时,

=

整理,得2b2﹣a2﹣2c2+ab=0,

将c= 代入,得a2=b2

∵a>0,b>0,

∴a=b=c,

即△ABC是等边三角形


【解析】(1)由题意得出△=0,得出c2+a2=b2 , 由勾股定理的逆定理得出△ABC是直角三角形即可;(2)由x=﹣ 时函数有最大值为 ,可知顶点的横坐标为﹣ ,纵坐标为 ,根据顶点坐标公式列方程求解即可.
【考点精析】利用二次函数的最值和抛物线与坐标轴的交点对题目进行判断即可得到答案,需要熟知如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y= 在第一象限内的图象与△ABC有交点,则k的取值范围是(
A.1≤k≤4
B.2≤k≤8
C.2≤k≤16
D.8≤k≤16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则 的长(
A.2π
B.π
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为(

A.10.5
B.7 ﹣3.5
C.11.5
D.7 ﹣3.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.

(1)求证:①PE=PD;②PE⊥PD;
(2)设AP=x,△PBE的面积为y.
①求出y关于x的函数关系式,并写出x的取值范围;
②当x取何值时,y取得最大值,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知菱形ABCD的边长为6,对角线AC与BD相交于点O,OE⊥AB,垂足为点E,AC=4,那么sin∠AOE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是四边形ABCD的对角线BD上的一点,∠BAE=∠CBD=∠DAC.

(1)求证:DEAB=BCAE;
(2)求证:∠AED+∠ADC=180°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:

(1)此次抽样调査中.共调査了名中学生家长;
(2)将图①补充完整;
(3)根据抽样调查结果.请你估计我市城区80000名中学生家长中有多少名家长持反对态度?

查看答案和解析>>

同步练习册答案