精英家教网 > 初中数学 > 题目详情

已知矩形ABCD中,对角线AC,BD相交于点0,AC=8,∠ACB=30°.则△AOB的周长是


  1. A.
    16
  2. B.
    12
  3. C.
    10
  4. D.
    8
B
分析:根据矩形的性质求出AO和BO的长,然后根据含30°的角的直角三角形的性质求出AB的长,三者相加即可求出答案.
解答:∵矩形ABCD中,对角线AC=8,
∴AO=BO=AC=×8=4,
∵∠ACB=30°,
∴AB=AC=×8=4,
∴△AOB的周长=AO+BO+AB=4+4+4=12.
故选B.
点评:此题主要考查学生对矩形的性质和含30°的角的直角三角形的性质的理解和掌握,解答此题的关键是掌握矩形的对角线相等且互相平分.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,已知矩形ABCD中,CD=2,AD=3,点P是AD上的一个动点(与A、D不重合),过点P作PE⊥CP交直线AB于点E,设PD=x,AE=y,
(1)写出y与x的函数解析式,并指出自变量的取值范围;
(2)如果△PCD的面积是△AEP面积的4倍,求CE的长;
(3)是否存在点P,使△APE沿PE翻折后,点A落在BC上?证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知矩形ABCD中,AB=4,对角线BD=2AB,且BE平分∠ABD,点P从点D以每秒2个单位沿DB方向向点B运动精英家教网,点Q从点B以每秒1个单位沿BA方向向点A运动,设运动时间为t秒,△BPQ的面积为S.
(1)若t=2时,求证:△DBA∽△PBQ;
(2)求S关于t的函数关系式及S的最大值;
(3)在运动的过程中,△BQM能否成为等腰三角形?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知矩形ABCD中,对角线AC、BD交于O,若∠AOB=120°,BD=8cm,则矩形ABCD的面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知矩形ABCD中,BC=6,AB=8,延长AD到点E,使AE=15,连接BE交AC于点P.
(1)求AP的长;
(2)若以点A为圆心,AP为半径作⊙A,试判断线段BE与⊙A的位置关系并说明理由;
(3)已知以点A为圆心,r1为半径的动⊙A,使点D在动⊙A的内部,点B在动⊙A的外部.
①求动⊙A的半径r1的取值范围;
②若以点C为圆心,r2为半径的动⊙C与动⊙A相切,求r2的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知矩形ABCD中,CE∥DF.
(1)请问图中有哪几对三角形全等,全部写出来(不另添辅助线);
(2)请任选其中一对全等三角形给予证明.

查看答案和解析>>

同步练习册答案