精英家教网 > 初中数学 > 题目详情
如图1,长方形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC,且
AB-4
+|BC-6|=0
,点P、Q分别是边AD、AB上的动点.

(1)求BD的长;
(2)①如图2,在P、Q运动中是否能使△CPQ成为等腰直角三角形?若能,请求出PA的长;若不能,请说明理由;
②如图3,在BC上取一点E,使EC=5,那么当△EPC为等腰三角形时,求出PA的长.
考点:四边形综合题
专题:
分析:(1)由条件可求得AB=4,BC=6,由勾股定理可求出BD的长;
(2)①由题可知只能有∠QPC为直角,当PQ=PC时,可证得Rt△PDC≌Rt△QAP,可求得AP的长;②分PC=EC、PC=PE和PE=EC三种情况分别利用等腰三角形的性质和勾股定理求解即可.
解答:解:
(1)如图1,连接BD,

AB-4
+|BC-6|=0

∴AB=4,BC=6,
则在Rt△ABD中,由勾股定理可求得BD=
42+62
=2
13

(2)①能,AP=4,理由如下:
如图2,由图形可知∠PQC和∠PCQ不可能为直角,所以只有∠QPC=90°,则∠QPA+∠CPD=∠PCD+∠CPD,
∴∠QPA=∠PCD,
当PQ=PC时,
在Rt△APQ和Rt△DCP中
∠QPA=∠PCD
∠A=∠D
PQ=PC

∴△APQ≌△DCP(AAS),
∴AP=CD=4,
故在P、Q运动中是否能使△CPQ成为等腰直角三角形,此时AP=4;

②当PC=EC=5时,在Rt△PCD中,CD=4,PC=EC=5,由勾股定理可求得PD=3,所以AP=AB-PD=3,
当PC=PE=5时,如图3,过P作PF⊥BC交BC于点F,则FC=EF=PD=
1
2
EC=2.5,所以AP=AB-PD=6-2.5=3.5,
当PE=EC=5时,如图4,过E作EH⊥AD于点H,由可知AH=BE=1,在Rt△EHD中,EH=AB=4,EP=5,由勾股定理可得HP=3,所以AP=AH+PH=1+3=4,
综上可知当△EPC为等腰三角形时,求出PA的长为3、3.5或4.
点评:本题主要考查矩形的性质及全等三角形的判定和性质、等腰三角形的性质的综合应用,在(2)①中判断出只有PQ=PC一种情况、②中分三种情况进行讨论求解是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,请你画出位似中心点O,并写出位似中心的坐标(保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

人眼看作品的视角是30°时,欣赏美术作品的效果最佳,当小慧看到一幅2.2米的作品时,发现该作品挂在墙面上的顶端A点距离地面3.8米,若小慧的眼睛距离地面1.60米,当看到该作品的效果达到最佳时,小慧的眼睛距离挂美术作品的墙面的最远距离是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,CA=CB=6,∠ACB=120°,将△ABC绕点C逆时针旋转角α(0°<α<120°)得△A1CB1,A1C交AB于E,A1B1分别交AB、CB于D、F,连结A1A.
(1)当α为多少度时,△AA1E是等腰三角形;
(2)当α=30°时,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一圆柱体木块高5cm,底面半径
12
π
cm,一只蚂蚁沿圆柱体侧面从点A爬到点B出觅食,要爬行的最短距离是
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=4,直线y=2x-4经过点C,交y轴于点G.
(1)点C、D的坐标分别是C (
 
 
),D(
 
 
);
(2)求顶点在直线y=2x-4上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=2x-4平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线顶点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).
(1)当点E与点B重合时,点F恰好与点C重合(如图②),PC的长为
 

(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中(如图①是该过程的某个时刻),请你观察、猜想,并解答:
PF
PE
的值是否发生变化?如果不变,只需直接写出比值,如果发生变化,请简单说明理由.
 

(3)连接PB,如图③,在直角尺旋转过程中,随着点E和F位置的改变,我们容易发现,当BE=PE时,
EF垂直平分PB,请计算求出这时点E在距离A点多远处?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰△ABC的底边BC的长为2cm,面积是6cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F.若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

写出一个大于-4的负数
 

查看答案和解析>>

同步练习册答案