精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是( )

A.18cm2
B.12cm2
C.9cm2
D.3cm2

【答案】C
【解析】解:∵tan∠C= ,AB=6cm,
= =
∴BC=8,
由题意得:AP=t,BP=6﹣t,BQ=2t,
设△PBQ的面积为S,
则S= ×BP×BQ= ×2t×(6﹣t),
S=﹣t2+6t=﹣(t2﹣6t+9﹣9)=﹣(t﹣3)2+9,
P:0≤t≤6,Q:0≤t≤4,
∴当t=3时,S有最大值为9,
即当t=3时,△PBQ的最大面积为9cm2
故选C.
先根据已知求边长BC,再根据点P和Q的速度表示BP和BQ的长,设△PBQ的面积为S,利用直角三角形的面积公式列关于S与t的函数关系式,并求最值即可本题考查了有关于直角三角形的动点型问题,考查了解直角三角形的有关知识和二次函数的最值问题,解决此类问题的关键是正确表示两动点的路程(路程=时间×速度);这类动点型问题一般情况都是求三角形面积或四边形面积的最值问题,转化为函数求最值问题,直接利用面积公式或求和、求差表示面积的方法求出函数的解析式,再根据函数图象确定最值,要注意时间的取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.
(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?
(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(12)B(31)C(-2-1).

1)在图中作出关于轴对称的.

2)写出点的坐标(直接写答案).

A1_____________B1______________C1______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:

x

1

2

3

5

7

9

y

1.98

3.95

2.63

1.58

1.13

0.88

小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小腾的探究过程,请补充完整:

(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①x=4对应的函数值y约为
②该函数的一条性质:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是(  )

A.4.8
B.5
C.6
D.7.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=90°,AB=AC,AD是经过A点的一条直线,且B、CAD的两侧,BDADD,CEADE,交AB于点F,CE=10,BD=4,则DE的长为(  )

A. 6 B. 5 C. 4 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交 于点F,交过点C的切线于点D.

(1)求证:DC=DP;
(2)若∠CAB=30°,当F是 的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为( )

A.3
B.4
C.5
D.6

查看答案和解析>>

同步练习册答案