精英家教网 > 初中数学 > 题目详情

【题目】已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:

x

1

2

3

5

7

9

y

1.98

3.95

2.63

1.58

1.13

0.88

小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小腾的探究过程,请补充完整:

(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①x=4对应的函数值y约为
②该函数的一条性质:

【答案】
(1)

解:如图,


(2)2;该函数有最大值
【解析】解:①x=4对应的函数值y约为2;
②该函数有最大值.
故答案为2,该函数有最大值.
本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.
(1)按照自变量由小到大,利用平滑的曲线连结各点即可;
(2)①在所画的函数图象上找出自变量为4所对应的函数值即可;②利用函数图象有最高点求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】△ABC中,∠B=∠C,AB垂直平分线与AC所在直线相交所得锐角为 50°,求∠B的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.

(1)画出△ABC向上平移6个单位得到的△A1B1C1
(2)以点C为位似中心,在网格中画出△A2B2C2 , 使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:
小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.
小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.

(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)
参考小明思考问题的方法,解答下列问题:
(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;
(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k< ),∠AED=∠BCD,求 的值(用含k的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值(  )

A.不变
B.增大
C.减小
D.先变大再变小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是( )

A.18cm2
B.12cm2
C.9cm2
D.3cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQDAQ.

(1)求∠BPQ的度数;

(2)PQ=3,EP=1,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计如表:

成绩(分)

35

39

42

44

45

48

50

人数(人)

2

5

6

6

8

7

6

根据表中的信息判断,下列结论中错误的是(  )
A.该班一共有40名同学
B.该班学生这次考试成绩的众数是45分
C.该班学生这次考试成绩的中位数是45分
D.该班学生这次考试成绩的平均数是45分

查看答案和解析>>

同步练习册答案