分析 (1)根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE.
(2)根据全等得出∠EAC=∠BAC=60°,即可求出∠EAB.
解答 (1)证明:∵△ABC是等边三角形,
∴AC=BC,∠B=∠ACB=60°.
∵线段CD绕点C顺时针旋转60°得到CE,![]()
∴CD=CE,∠DCE=60°,
∴∠DCE=∠ACB,
即∠BCD+∠DCA=∠DCA+∠ACE,
∴∠BCD=∠ACE,
在△BCD与△ACE中,
$\left\{\begin{array}{l}{BC=AC}\\{∠BCD=∠ACE}\\{DC=EC}\end{array}\right.$,
∴△BCD≌△ACE,
(2)∵△BCD≌△ACE,
∴∠EAC=∠BAC=60°,
∴∠EAB=∠EAC+∠CAB=120°.
点评 本题考查了等边三角形的性质,全等三角形的性质和判定,旋转变换,正确寻找全等三角形是解题的关键,属于基础题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com