精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,边长为4的等边的边轴的负半轴上,反比例函数的图象经过边的中点,且与边交于点.

1)求的值;

2)连接,求的面积;

3)若直线与直线平行,且与的边有交点,直接写出的取值范围.

【答案】1;(23;(3.

【解析】

1)过点,根据等边三角形的性质可求出点C的坐标,把点C的坐标代入反比例函数即可求出k的值;

2)过点,过点.再根据等边三角形的性质可求得AF,BF,从而求出点A的坐标.再用待定系数法求出直线OA的解析式,让反比例函数解析 式与直线OA的解析式联立解方程组求出点D的坐标,三角形OCD的面积=四边形ODCE的面积-三角形OCE的面积.从而得到求解.

3)由图形可知当过点Cn有最大值,当n有最小值.

1)如图1,过点

是等边三角形,

中点,

.

中,

.

2)如图2.过点,过点.

设直线解析式为,则

由(1)可知反比例函数解析式为

联立方程组:

解得:(舍),

.

3.理由如下:

=1.

∵直线与直线平行,

∴m=1.

∴直线解析式为.

∴把代入,得:

n=.

代入,得:

n=0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图,ABC中AB=AC,AE是角平分线,BM平分ABC交AE于点M,经过B、M两点的O交BC于G,交AB于点F,FB恰为O的直径.

(1)求证:AE与O相切;

(2)当BC=6,cosC=,求O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图1,在△ABC中,∠ACB90°,BCAC,点DAB上,DEABBCE,点FAE的中点

1)写出线段FD与线段FC的关系并证明;

2)如图2,将△BDE绕点B逆时针旋转α0°<α90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;

3)将△BDE绕点B逆时针旋转一周,如果BC4BE2,直接写出线段BF的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一组数据a1a2a3的平均数为4,方差为3,那么数据a1+2a2+2a3+2的平均数和方差分别是(  )

A. 43B. 63C. 34D. 65

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点M为二次函数y=﹣(xb2+4b+1图象的顶点,直线ymx+5分别交x轴正半轴,y轴于点AB

1)判断顶点M是否在直线y4x+1上,并说明理由.

2)如图1,若二次函数图象也经过点AB,且mx+5>﹣(xb2+4b+1,根据图象,写出x的取值范围.

3)如图2,点A坐标为(50),点MAOB内,若点Cy1),Dy2)都在二次函数图象上,试比较y1y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A的坐标为(40),点By轴上的一动点,将线段AB绕点B顺时针旋转90°得线段BC,若点C恰好落在反比例函数y的图象上,则点B的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:

使用次数

0

5

10

15

20

人数

1

1

4

3

1

1)这10位居民一周内使用共享单车次数的中位数是   次,众数是   次,平均数是   次.

2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是   .(填中位数众数平均数

3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是矩形,等腰△ODE中,OEDE,点ADx轴的正半轴上,点Cy轴的正半轴上,点BE在反比例函数y的图象上,OA5OC1,则△ODE的面积为(  )

A.2.5B.5C.7.5D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,经过正方形ABCD的顶点A在其外侧作直线AP,点B关于直线AP的对称点为E,连接BEDE,其中DE交直线AP于点F

1)依题意补全图1

2)若∠PAB30°,求∠ADF的度数.

3)如图,若45°<∠PAB90°,用等式表示线段ABFEFD之间的数量关系,并证明.

查看答案和解析>>

同步练习册答案