精英家教网 > 初中数学 > 题目详情

【题目】某工厂设门市部专卖某产品,该产品每件成本40元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:

每件销售价(元)

50

60

70

75

80

85

每天售出件数

300

240

180

150

120

90

假设当天定的售价是不变的,且每天销售情况均服从这种规律.
(1)观察这些统计数据,找出每天售出件数y与每件售价x(元)之间的函数关系,并写出该函数关系式.
(2)门市部原设有两名营业员,但当销售量较大时,在每天售出量超过168件时,则必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为40元.求每件产品应定价多少元,才能使每天门市部纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其它开支不计)

【答案】
(1)解:经过图表数据分析,每天售出件数y与每件售价x(元)之间的函数关系为一次函数,

设y=kx+b,经过(50,300)、(60,240),

解得k=﹣6,b=600,

故y=﹣6x+600


(2)解:①设每件产品应定价x元,由题意列出函数关系式

W=(x﹣40)×(﹣6x+600)﹣3×40

=﹣6x2+840x﹣24000﹣120

=﹣6(x2﹣140x+4020)

=﹣6(x﹣70)2+5280.

②当y=168时x=72,这时只需要两名员工,

W=(72﹣40)×168﹣80=5296>5280.

故当每件产品应定价72元,才能使每天门市部纯利润最大


【解析】(1)经过图表数据分析,每天售出件数y与每件售价x(元)之间的函数关系为一次函数,设y=kx+b,解出k、b即可求出;(2)由利润=(售价﹣成本)×售出件数﹣工资,列出函数关系式,求出最大值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,AD⊥BC于点D,以AD为一边向右作等边三角形ADE,DE与AC交于点F.

(1)试判断DF与EF的数量关系,并给出证明;

(2)若CF的长为2 cm,试求等边三角形ABC的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=30°,BC=2 ,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.
(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)
(2)当每辆车的日租金为多少元时,每天的净收入最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点M的坐标为(3,﹣2),线段AB的位置如图所示,其中点A的坐标为(7,3),点B的坐标为(1,4).

(1)将线段AB平移可以得到线段MN,其中点A的对应点为M(3,﹣2),点B的对应点为N,则点N的坐标为   

(2)在(1)的条件下,若点C的坐标为(4,0),请在图中描出点N并顺次连接BC,CM,MN,NB,然后求出四边形BCMN的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知实数m满足m2﹣m﹣2=0,当m=时,函数y=xm+(m+1)x+m+1的图象与x轴无交点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示,B、C、D三点在同一条直线上,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是(  )

A. A与D互为余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y= 的图象上.若点B在反比例函数y= 的图象上,则k的值为

查看答案和解析>>

同步练习册答案