精英家教网 > 初中数学 > 题目详情
14.如图,四边形ABCD中,∠A=∠ABC=90°,点E是边CD上一点,连接BE,并延长与AD的延长线相交于点F,请你只添加一个条件:BC=DF,使四边形BDFC为平行四边形.

分析 先根据∠A=∠ABC=90°,判定BC∥DF,再根据一组对边平行且相等的四边形是平行四边形,得出结论.

解答 解:∵四边形ABCD中,∠A=∠ABC=90°,
∴BC∥DF,
∴当BC=DF时,四边形BDFC是平行四边形.
故答案为:BC=DF.

点评 本题主要考查了平行四边形的判定,解题时注意:一组对边平行且相等的四边形是平行四边形,这是得出结论的依据,本题答案不唯一.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,边长为1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.
(1)当t=$\frac{1}{3}$时,求直线DE的函数表达式:
(2)如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;
(3)当OD2+DE2取最小值时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.方程4x+y=8的正整数解是$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知关于x,y的方程组$\left\{\begin{array}{l}{ax+by=7.5}\\{ax-by=10}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$,则关于x1,y1的方程组$\left\{\begin{array}{l}{a({x}_{1}+1)+b({y}_{1}-1)=7.5}\\{a({x}_{1}+1)-b({y}_{1}-1)=10}\end{array}\right.$的解是$\left\{\begin{array}{l}{{x}_{1}=-2}\\{{y}_{1}=-1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.方程组$\left\{\begin{array}{l}{x+y=10}\\{2x+y=16}\end{array}\right.$的解是(  )
A.$\left\{\begin{array}{l}{x=5}\\{y=5}\end{array}\right.$B.$\left\{\begin{array}{l}{x=6}\\{y=4}\end{array}\right.$C.$\left\{\begin{array}{l}{x=2}\\{y=8}\end{array}\right.$D.$\left\{\begin{array}{l}{x=7}\\{y=2}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列各对x,y的值是方程3x-2y=7的解是(  )
A.$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$B.$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$C.$\left\{\begin{array}{l}{x=-1}\\{y=-5}\end{array}\right.$D.$\left\{\begin{array}{l}{x=5}\\{y=-4}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,抛物线y=$\frac{1}{2}$x2+bx+c与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C点D在函数图象上.
(1)求该抛物线的函数关系式;
(2)设点D的横坐标为m(-4<m<0),四边形ADCB的面积为S,求S与m之间的函数关系式,并写出S的取值范围;
(3)当(2)中的S=13时,求点D的横坐标;
(4)若点E是线段BC的中点,点P是抛物线对称轴上的一点,设点P的纵坐标为t,请直接写出当△PEB为钝角三角形时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解不等式组$\left\{\begin{array}{l}{\frac{x+1}{3}>0}\\{2(x+5)≥6(x-1)}\end{array}\right.$,并在数轴上表示其解集.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.方程3x-k=4的解为x=3,则函数y=3x-k中,当x=3时,y=4.

查看答案和解析>>

同步练习册答案