精英家教网 > 初中数学 > 题目详情
2.已知关于x,y的方程组$\left\{\begin{array}{l}{ax+by=7.5}\\{ax-by=10}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$,则关于x1,y1的方程组$\left\{\begin{array}{l}{a({x}_{1}+1)+b({y}_{1}-1)=7.5}\\{a({x}_{1}+1)-b({y}_{1}-1)=10}\end{array}\right.$的解是$\left\{\begin{array}{l}{{x}_{1}=-2}\\{{y}_{1}=-1}\end{array}\right.$.

分析 仿照已知方程组的解法,求出所求方程组的解即可.

解答 解:根据题意得:$\left\{\begin{array}{l}{{x}_{1}+1=-1}\\{{y}_{1}-1=-2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{{x}_{1}=-2}\\{{y}_{1}=-1}\end{array}\right.$,
则关于x1,y1的方程组$\left\{\begin{array}{l}{a({x}_{1}+1)+b({y}_{1}-1)=7.5}\\{a({x}_{1}+1)-b({y}_{1}-1)=10}\end{array}\right.$的解是$\left\{\begin{array}{l}{{x}_{1}=-2}\\{{y}_{1}=-1}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{{x}_{1}=-2}\\{{y}_{1}=-1}\end{array}\right.$

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点.∠APC=∠CPB=60°.
(1)判断△ABC的形状:等边三角形;
(2)当点P位于什么位置时,四边形APBC的面积最大?求出最大面积;
(3)直接写出线段PA,PB,PC之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.【探索研究】我们可以借鉴以前研究函数的经验,探索函数y=x+$\frac{1}{x}$(x>0)的图象性质.
(1)根据下表数据,画出上述函数图象.
X$\frac{1}{4}$$\frac{1}{3}$$\frac{1}{2}$1234
y$\frac{17}{4}$$\frac{10}{3}$$\frac{5}{2}$2$\frac{5}{2}$$\frac{10}{3}$$\frac{17}{4}$
(2)观察图象,写出该函数的一个性质.
【阅读理解】当x>0时,y=x+$\frac{1}{x}$=${({\sqrt{x}})^2}+{({\sqrt{\frac{1}{x}}})^2}={({\sqrt{x}-\sqrt{\frac{1}{x}}})^2}+2$
(3)由此可见,当x=1时,函数y=x+$\frac{1}{x}$(x>0)的最小值为2.
【变形应用】
(4)求函数y=x+$\frac{1}{x+1}$(x>-1)的最小值,并指出y取得最小值时相应的x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.若关于x,y的二元一次方程组$\left\{\begin{array}{l}{2x+y=3k-1}\\{x+2y=-2}\end{array}\right.$的解满足x-y>4,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1x的图象相交于点A(4,3),且OA=OB.
(1)分别求出这两个函数的解析式;
(2)求△AOB的面积;
(3)点P在x轴上,且△POA是等腰三角形,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.(1)$|{\sqrt{3}-\sqrt{6}}|+|{2\sqrt{3}-3\sqrt{5}}|-(-3\sqrt{3}+\sqrt{6})$;
(2)$\left\{\begin{array}{l}\frac{x}{4}+\frac{2y}{3}=-1\\ 2(x+y)-3(x-y)=-19\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,四边形ABCD中,∠A=∠ABC=90°,点E是边CD上一点,连接BE,并延长与AD的延长线相交于点F,请你只添加一个条件:BC=DF,使四边形BDFC为平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B;直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q.
(1)求证:OB=OC;
(2)当点C坐标为(0,3)时,求点Q的坐标;
(3)当△OPC≌△ADP时,直接写出C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某校在一次植树造林活动中,七、八、九三个年级都恰好完成了学校分配的植树任务,图1是植树任务分配比例统计图,一个月后,各年级所植树木都有80%成活,图2是成活棵数统计图.

(1)求七、八、九三个年级共植树多少棵?
(2)七年级分配的任务占全校的30%,求图2中的n的值为240(直接填空)

查看答案和解析>>

同步练习册答案