精英家教网 > 初中数学 > 题目详情
12.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点.∠APC=∠CPB=60°.
(1)判断△ABC的形状:等边三角形;
(2)当点P位于什么位置时,四边形APBC的面积最大?求出最大面积;
(3)直接写出线段PA,PB,PC之间的数量关系.

分析 (1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;
(2)过点P作PE⊥AB,垂足为E,过点C作CF⊥AB,垂足为F,把四边形的面积转化为两个三角形的面积进行计算,当点P为$\widehat{AB}$的中点时,PE+CF=PC从而得出最大面积;
(3)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得.

解答 证明:(1)△ABC是等边三角形.
证明如下:在⊙O中
∵∠BAC与∠CPB是$\widehat{BC}$所对的圆周角,∠ABC与∠APC是$\widehat{AC}$所对的圆周角,
∴∠BAC=∠CPB,∠ABC=∠APC,
又∵∠APC=∠CPB=60°,
∴∠ABC=∠BAC=60°,
∴△ABC为等边三角形;
故答案为:等边三角形;
(2)当点P为$\widehat{AB}$的中点时,四边形APBC的面积最大.
理由如下,如图1,过点P作PE⊥AB,垂足为E.
过点C作CF⊥AB,垂足为F.
∵S△APB=$\frac{1}{2}$AB•PE,S△ABC=$\frac{1}{2}$AB•CF,
∴S四边形APBC=$\frac{1}{2}$AB•(PE+CF),
当点P为$\widehat{AB}$的中点时,PE+CF=PC,PC为⊙O的直径,
∴此时四边形APBC的面积最大.
又∵⊙O的半径为1,
∴其内接正三角形的边长AB=$\sqrt{3}$,
∴S四边形APBC=$\frac{1}{2}$×2×$\sqrt{3}$=$\sqrt{3}$;

(3)在PC上截取PD=AP,如图2,
又∵∠APC=60°,
∴△APD是等边三角形,
∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.
又∵∠APB=∠APC+∠BPC=120°,
∴∠ADC=∠APB,
在△APB和△ADC中,$\left\{\begin{array}{l}{∠APB=∠ADC}\\{∠ABP=∠ACD}\\{AP=AD}\end{array}\right.$,
∴△APB≌△ADC(AAS),
∴BP=CD,
又∵PD=AP,
∴CP=BP+AP.

点评 本题考查了圆周角定理、等边三角形的判定、三角形的面积公式以及三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.求证:不论m取何值,关于x的方程2x2+3(m-1)x+m2-4m-7=0总有两个不相等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解下列不等式或不等式组,并将其解集在数轴上表示出来:
(1)2(x+6)≥3x-18
(2)$\left\{\begin{array}{l}{x-3(x-2)<12①}\\{\frac{2x+3}{5}>\frac{x}{2}②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.用配方法解下列方程:
(1)2x2+4x+1=0
(2)3x2-x-2=0
(3)2y2=7y+4
(4)$\frac{1}{2}$t2+3t=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列方程组中,属于二元一次方程组的是(  )
A.$\left\{\begin{array}{l}{x+y=5}\\{y=2}\end{array}\right.$B.$\left\{\begin{array}{l}{x+y=2}\\{y-z=8}\end{array}\right.$C.$\left\{\begin{array}{l}{xy=4}\\{y=1}\end{array}\right.$D.$\left\{\begin{array}{l}{{x}^{2}-1=0}\\{x+y=3}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,直线l1∥l2,AB与直线l1交于点C,BD与直线l2相交于点D,若∠1=60°,∠2=50°,则∠3=110°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,边长为1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.
(1)当t=$\frac{1}{3}$时,求直线DE的函数表达式:
(2)如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;
(3)当OD2+DE2取最小值时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知关于x、y的方程组$\left\{\begin{array}{l}{2x+y=-7-a}\\{x-3y=10a}\end{array}\right.$的解x为非正数,y为负数,求a的取值范围,并把a的取值范围在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知关于x,y的方程组$\left\{\begin{array}{l}{ax+by=7.5}\\{ax-by=10}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$,则关于x1,y1的方程组$\left\{\begin{array}{l}{a({x}_{1}+1)+b({y}_{1}-1)=7.5}\\{a({x}_{1}+1)-b({y}_{1}-1)=10}\end{array}\right.$的解是$\left\{\begin{array}{l}{{x}_{1}=-2}\\{{y}_{1}=-1}\end{array}\right.$.

查看答案和解析>>

同步练习册答案