精英家教网 > 初中数学 > 题目详情
17.如图,直线l1∥l2,AB与直线l1交于点C,BD与直线l2相交于点D,若∠1=60°,∠2=50°,则∠3=110°.

分析 延长CB交直线l2于M,根据平行线的性质求出∠CMD,根据三角形外角性质求出即可.

解答 解:
延长CB交直线l2于M,
∵直线l1∥l2,∠1=60°,
∴∠CMD=∠1=60°,
∵∠2=50°,
∴∠3=∠2+∠CMD=110°,
故答案为:110°.

点评 本题考查了平行线的性质,三角形的外角性质的应用,能正确根据性质定理进行推理是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.k取什么实数时,关于x的方程(k-2)x2-2x+1=0.
(1)有两个不相等的实根;
(2)有一个实根;
(3)没有实根.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,已知在平行四边形ABCD中,AE⊥BC交于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′,若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为(  )
A.130°B.150°C.160°D.170°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在?ABCD中,过D作DE⊥AB于点E,点F在边CD上,CF=AE.
求证:四边形BFDE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点.∠APC=∠CPB=60°.
(1)判断△ABC的形状:等边三角形;
(2)当点P位于什么位置时,四边形APBC的面积最大?求出最大面积;
(3)直接写出线段PA,PB,PC之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.对于平面直角坐标系中的任意点P(x,y),点P到x,y轴的距离分别为d1,d2我们把d1+d2称为点P的直角距离.记作d,即d=d1+d2.直线y=-2x+4分别与x,y轴交于点A,B,点P在直线上.
(1)当P为线段AB的中点时,d=3;
(2)当d=3时,求点P的坐标;
(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,点D是直线l外一点,在l上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是两组对边分别相等的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图(1),(2)、(3),…(n),点M,N分别是⊙O的内接等边三角形ABC,内接正方形ABCD,内接正五边形ABCDE,…,内接正n边形ABCDE…的边AB,BC上的点,且BM=CN,连接OM,ON.
(1)求图(1)中∠MON的度数;
(2)图(2)中∠MON的度数是90°;
(3)图(3)中∠MON的度数是72°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.(1)$|{\sqrt{3}-\sqrt{6}}|+|{2\sqrt{3}-3\sqrt{5}}|-(-3\sqrt{3}+\sqrt{6})$;
(2)$\left\{\begin{array}{l}\frac{x}{4}+\frac{2y}{3}=-1\\ 2(x+y)-3(x-y)=-19\end{array}\right.$.

查看答案和解析>>

同步练习册答案