【题目】如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.
(1)求证:AC是⊙D的切线;
(2)若CE=2,求⊙D的半径.
【答案】(1)见详解;(2)2.
【解析】
(1)连接AD,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°﹣60°﹣30°=90°,于是得到AC是⊙D的切线;
(2)连接AE,推出△ADE是等边三角形,得到AE=DE,∠AED=60°,求得∠EAC=∠AED﹣∠C=30°,得到AE=CE=2,于是得到结论.
(1)证明:连接AD,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵AD=BD,
∴∠BAD=∠B=30°,
∴∠ADC=60°,
∴∠DAC=180°﹣60°﹣30°=90°,
∴AC是⊙D的切线;
(2)解:连接AE,
∵AD=DE,∠ADE=60°,
∴△ADE是等边三角形,
∴AE=DE,∠AED=60°,
∴∠EAC=∠AED﹣∠C=30°,
∴∠EAC=∠C,
∴AE=CE=2,
∴⊙D的半径AD=2.
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,∠BAD=60°,点E在边AD上,连接BE,在BE上取点F,连接AF并延长交BD于H,且∠AFE=60°,过C作CG∥BD,直线CG、AF交于G.
(1)求证:∠FAE=∠EBA;
(2)求证:AH=BE;
(3)若AE=3,BH=5,求线段FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校开展课外体育活动,决定开展:篮球、乒乓球、踢毽子、跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.
(1)样本中最喜欢篮球项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度;
(2)请把条形统计图补充完整;
(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1 ,它与x轴交于两点O,A;将C1绕点A旋转180°得到C2 , 交x轴于A1;将C2绕点A1旋转180°得到C3 , 交x轴于点A2 . .....如此进行下去,直至得到C2018 , 若点P(4035,m)在第2018段抛物线上,则m的值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.
(1)①如图2,求出抛物线y=x2的“完美三角形”斜边AB的长;
②请写出一个抛物线的解析式,使它的完美三角形与y=x2+1的“完美三角形”全等;
(2)若抛物线y=ax2+4的“完美三角形”的斜边长为4,求a的值;
(3)若抛物线y=mx2+2x+n5的“完美三角形”斜边长为n,且y=mx2+2x+n5的最大值为1,求m,n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=2,BC=4,点P是BC边上的一个动点(点P不与点B,C重合),现将△ABP沿直线AP折叠,使点B落到点B′处;作∠B′PC的角平分线交CD于点E.设BP=x,CE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点,连结OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求证:CE⊥AB;
(2)求证:PC是⊙O的切线;
(3)若BD=2OD,且PB=9,求⊙O的半径长和tan∠P的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为的正方形ABCD中,点E是BC边上一点,点F是CD边上一点,且BF⊥AE于点G,将△ABE绕顶点A逆时针旋转得△AB/E/,使得点B/、E/恰好分别落在AE、CD上,AE/交BF于点H,则四边形B/E/HG的面积为_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com