【题目】如图,方格纸中每个小正方形的边长都是1个单位长度.小正方形的顶点称为格点的三个顶点,,.
(1)将以点为旋转中心旋转,得到,请画出的图形;
(2)平移,使点的对应点坐标为,请画出平移后对应的;
(3)若将绕某一点旋转可得到,请直接写出旋转中心的坐标;
(4)请画出一个以为对角线,面积是20的菱形(要求,是格点).
【答案】(1)图见解析;(2)图见解析;(3)旋转中心坐标;(4)图见解析
【解析】
(1)将以点为旋转中心旋转后作出图形即可;(2)由,点可知,将向下平移8个单位长度即可得;(3)连接、,交点即为旋转中心,根据对应点的坐标求出旋转中心的坐标即可;(4)根据的坐标可知,的水平距离为4,根据菱形的面积为20,则将点向下平移5个单位长度,则将点向上平移5个单位长度,即可得到点E、F,顺次连接即为所求.
(1)将以点为旋转中心旋转,
则坐标分别为(2,2)、(0,-1),
如图所示,即为所求;
(2)由,点可知,
将向下平移8个单位长度即可得,
如图所示,即为所求:
(3)连接、,交点即为旋转中心,
∵(2,2)、,,,
∴旋转中心坐标为;
(4)∵(2,2)、,
∴的水平距离为4,
∵菱形的面积为20,
∴,
∴将点向下平移5个单位长度,则将点向上平移5个单位长度,即可得到点E、F,
如图所示,菱形即为所求.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AD=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,延长DF交BC与点M,连接BF、DG.以下结论:①∠BFD+∠ADE=180°;②△BFM为等腰三角形;③△FHB∽△EAD;④BE=2FM⑤S△BFG=2.6 ⑥sin∠EGB=;其中正确的个数是( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AD=BC=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF.
(1)若∠ADC=80°,求∠ECF;
(2)求证:∠ECF=∠CEF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,二次函数y=ax2+bx+c(a≠0)的图象,有下列4个结论:①abc>0;②b>a+c;③4a+2b+c>0;④b2-4ac>0;其中正确的个数有( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C点,抛物线经过A,B,C三点,顶点为F.
(1)求A,B,C三点的坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)已知M为抛物线上一动点(不与C点重合),试探究:
①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;
②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与⊙O相切于点D,过圆心O作EF∥交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;
(1)求证:∠ABC+∠ACB=90°;
(2)若⊙O的半径,BD=12,求tan∠ACB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种.为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种)并将调查结果绘制成如下不完整的统计图表:
学生最喜欢的活动项目的人数统计表 | ||
项目 | 学生数(名) | 百分比(%) |
袋鼠跳 | 45 | 15 |
夹球跑 | 30 | c |
跳大绳 | 75 | 25 |
绑腿跑 | b | m |
拔河赛 | 90 | 30 |
根据图表中提供的信息,解答下列问题:
(1)a= ,b= ,c= ;
(2)请将条形统计图补充完整;
(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1 ,在中,是边上一点(不与点重合),将线段绕点逆时针旋转得到,连接.
(发现问题)
(1)如图1 ,通过图形旋转的性质,可知_______, 度;
(解决问题)
(2)如图1,证明;
(拓展延伸)
如图2,在中,为外一点,且,仍将线段绕点逆时针旋转得到,连接.
(3)若求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com