精英家教网 > 初中数学 > 题目详情
如图,已知一次函数y=kx+b的图象交反比例函数y=
4-2m
x
的图象交于点A、B,交x轴于点C.
(1)求m的取值范围;
(2)若点A的坐标是(2,-4),且
BC
AB
=
1
3
,求m的值和一次函数的解析式;
(3)根据图象,写出当反比例函数的值小于一次函数的值时x 的取值范围?
分析:(1)根据反比例函数图象所在象限,可确定4-2m<0,进而可得m的取值范围;
(2)将点A(2,-4)代入y=
4-2m
x
,求出m的值,再根据
BC
AB
=
1
3
,求出B的纵坐标,代入反比例函数解析式,求出B的横坐标,再利用待定系数法求出一次函数解析式.
(3)根据函数图象交点即可得到反比例函数的值小于一次函数的值时x 的取值范围.
解答:解:(1)∵反比例函数位于第四象限,
∴4-2m<0,
∴m>2;
(2)将点A(2,-4)代入y=
4-2m
x
得,
4-2m
2
=-4,
解得,m=6;
作BD⊥x轴,
BC
AB
=
1
3

DB
4
=
1
4

∴DB=1,
B点纵坐标为-1,
将y=-1代入解析式y=-
8
x
得,x=8,
故B点坐标为(8,-1),
设一次函数解析式为y=kx+b,
把A(2,-4),B(8,-1)分别代入解析式得,
2k+b=-4
8k+b=-1

解得
k=
1
2
b=-5

故AB的解析式为y=
1
2
x-5

(3)由图可知,0<x<2或x>8.
点评:本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法及函数的性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知一次函数y1=kx+b的图象与反比例函数y2=
ax
的图象交于A(2,4)和精英家教网B(-4,m)两点.
(1)求这两个函数的解析式;
(2)求△AOB的面积;
(3)根据图象直接写出,当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知一次函数y=kx+b的图象与反比例函数y=-
8x
的图象交于A,B点,且点A的横坐标和点B的纵坐标都是-2.求:
(1)求A、B两点坐标;
(2)求一次函数的解析式;
(3)根据图象直接写出使一次函数的值小于反比例函数的值的x的取值范围.
(4)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•新疆)如图,已知一次函数y1=kx+b与反比例函数y2=
mx
的图象交于A(2,4)、B(-4,n)两点.
(1)分别求出y1和y2的解析式;
(2)写出y1=y2时,x的值;
(3)写出y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知一次函数y=k1x+b经过A、B两点,将点A向上平移1个单位后刚好在反比例函数y=
k2x
上.
(1)求出一次函数解析式.
(2)求出反比例函数解析式.

查看答案和解析>>

同步练习册答案