【题目】在每个小正方形的边长为1的网格中,每个小正方形的顶点称为格点.我们将从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.
(1)在图1中画出边长为的正方形,使它的顶点在网格的格点上.
(2)在图2中有一只电子小马从格点出发,经过跳马变换到达与其相对的格点,则最少需要跳马变换的次数是 次.
(3)如图3,在的正方形网格中,一只电子小马从格点经过若干次跳马变换到达与其相对的格点,则它跳过的最短路程为 .
【答案】(1)作图见解析;(2)4;(3)14
【解析】试题分析:(1).根据题意画出图形即可;(2).根据题意画出图形解答;(3)根据从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换,计算出按A-C-F的方向连续变换10次后点S的位置,再根据点T的位置进行适当的变换,即可得到变换总次数.
解:(1)如图1,
(2)如图2,最少需要跳马变换的次数是4次.
(3)如图3, ,
两次变换相当于向右移动3格,向上移动3格,
又∵ ,
(不是整数),
按A-C-F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时S位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点T处,
从该正方形的顶点S经过跳马变换到达与其相对的顶点T,最少需要跳马变换的次数是14次,
∴它跳过的最短路程为 .
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与x轴交于点A(,0)、B(4,0)两点,与y轴交于点C。
(1)求抛物线的解析式;
(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度向C点运动。其中一个点到达终点时,另一个点也停止运动。当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最多面积是多少?
(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK∶S△PBO=5∶2,求K点坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期三个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,张老师一共调查了 名同学,其中C类女生有 名,D类男生有 名;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,草莓的价格w(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示.
(1)观察图象,直接写出当0≤x≤11时,日销售量y与上市时间x之间的函数解析式为 ;
当11≤x≤20时,日销售量y与上市时间x之间的函数解析式为 .
(2)试求出第11天的销售金额;
(3)若上市第15天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克15元,马叔叔到市场按照当日的价格w元/千克将批发来的草莓全部销售完,他在销售的过程中,草莓总质量损耗了2%.那么,马叔叔支付完来回车费20元后,当天能赚到多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一座抛物线型拱桥,桥下面在正常水位AB时宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米.若洪水到来时,水位以每小时0.2米的速度上升从警戒线开始,再持续多少小时才能到拱桥顶?(平面直角坐标系是以桥顶点为点O的)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com