精英家教网 > 初中数学 > 题目详情

已知:如图,AC=AD,AB是∠CAD的角平分线.求证:BC=BD.

证明:∵AB是∠CAD的角平分线,
∴∠BAC=∠BAD,
在△ABC和△ABD中
∴△ABC≌△ABD(SAS),
∴BC=BD.
分析:首先根据角平分线的性质可得∠BAC=∠BAD,再有条件AC=AD,AB是公共边,即可利用SAS定理判定△ABC≌△ABD,再根据全等三角形的性质可得到BC=BD.
点评:此题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

29、已知:如图,AC=BD,DF=CE,∠ECB=∠FDA.求证:AF=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AC=DF,AC∥FD,AE=DB,则根据
SAS
(填上SSS、SAS、ASA或AAS)可得△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AC是⊙O的直径,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切线,E精英家教网是切点,
求证:(1)OD∥AB;
(2)2DE2=BE•OD;
(3)设BE=2,∠ODE=a,则cos2a=
1OD

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知:如图,AC、BD交于O点,OA=OC,OB=OD、则不正确的结果是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AC平分∠BAD,CE⊥AB于E点,CF⊥AD于F点,在AB上有一点M,且CM=CD.
(1)请你用尺规作出点M的位置,
(2)若AF=12,DF=4,求AM的长,
(3)试说明∠CDA与∠CMA的关系.

查看答案和解析>>

同步练习册答案